Numerical studies of plasma emission in a mega joule plasma focus using Lee code
DOI:
https://doi.org/10.14311/ppt.2025.1.1Keywords:
gas pressure, pinch radius, radiatively-enhanced compressions, plasma emission, pf1000Abstract
In this paper, plasma emissions (radiative recombination, bremsstrahlung, and line radiation) from a mega-joule plasma focus (PF1000) device is studied using the Lee code for nitrogen (N2), oxygen (O2) and argon (Ar) gases with pressure variation in the range of (0.05–2.5) Torr. Ion density, plasma velocity, pinch temperature, Joule heating, peak current, and minimum pinch radius are also obtained with pressure change for each of the gases. It is found that the line radiation is predominant compared to bremsstrahlung radiation and radiative recombination for each gas. At the optimum pressure, the maximum line radiations are found as: 3.9 kJ (91 % of total emissions) at 0.945 Torr N2, 6.2 kJ (85 % of total emissions) at 0.6 Torr O2 and 30 kJ (97 % of total emissions) at 0.23 Torr Ar, respectively. The minimum pinch radius (rmin) and consequent ion densitiy (Ni) of these gases are computed at their corresponding optimum pressures. It is found that the rmin (0.13 cm) of Ar is 10-fold smaller than N2 (1.25 cm) while it is 6-fold smaller in O2 (0.82 cm). This smallest minimum pinch radius of Ar produces the dominating ion density (71 × 1023 m−3) compared to N2 (3 × 1023 m−3) and O2 (5 × 1023 m−3) gases resulting the highest line radiation is found for Ar. The sharp dropping of the pinch radius of Ar plasma followed by the greatest plasma emission (line) shows the strong evidence of radiatively-enhanced compressions.
References
S. Lee. A sequential plasma focus. IEEE transactions on plasma science, 19(5):912–919, 1991. doi:10.1109/27.108433.
M. Mathuthu, T. G. Zengeni, and A. V. Gholap. Measurement of magnetic field and velocity profiles in 3.6 kJ United Nations University/International Center for Theoretical Physics plasma focus fusion device. Physics of Plasmas, 3(12):4572–4576, 1996. doi:10.1063/1.871583.
G. Decker, W. Kies, and G. Pross. Experiments solving the polarity riddle of the plasma focus. Physics Letters A, 89(8):393–396, 1982. doi:10.1016/0375-9601(82)90331-0.
M. Sumini et al. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications. Radiation Physics and Chemistry, 140:452–457, 2017. doi:10.1016/j.radphyschem.2017.03.022.
M. Sumini, L. Isolan, M. Cremonesi, and C. Garibaldi. A plasma focus device as ultra-high dose rate pulsed radiation source. Part I: Primary electron beam characterization. Radiation Physics and Chemistry, 162:1–11, 2019. doi:10.1016/j.radphyschem.2019.02.027.
J. Jain et al. Characterization of x-rays pulses from a hundred joules plasma focus to study its effects on cancer cells. Journal of Physics: Conference Series, 720(1):012043, 2016. doi:10.1088/1742-6596/720/1/012043.
F. Buontempo et al. Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device. PLoS One, 13(6):0199312, 2018. doi:10.1371/journal.pone.0199312.
J. Jain et al. Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation. AIP Advances, (8):085121, 2017. doi:10.1063/1.4994655.
H. S. Poh et al. Potential use of plasma focus radiation sources in superficial cancer therapy. Japanese Journal of Applied Physics, 59:SHHB06, 2020. doi:10.35848/1347-4065/ab7c10.
V. A. Gribkov, A. Srivastava, P. L. C. Keat, et al. Operation of NX2 dense plasma focus device with argon filling as a possible radiation source for micro-machining. IEEE transactions on plasma science, 30(3):1331–1338, 2002. doi:10.1109/TPS.2002.802156.
V. A. Gribkov, M. Liu, P. L. C. Keat, et al. Dense plasma focus radiation source for microlithography and micromachining. In Microlithographic Techniques in Integrated Circuit Fabrication II, volume 4226, pages 151–159. International Society for Optics and Photonics, 2000. doi:10.1117/12.404852.
S. M. P. Kalaiselvi, T. L. Tan, A. Talebitaher, et al. Low-energy repetitive plasma focus based neon soft x-ray lithography source. In Advances in X-Ray/EUV Optics and Components IX, volume 9207, pages 160–171. SPIE, 2014. doi:10.1117/12.2062549.
R. R. Prasad, M. Krishnan, K. Berg, et al. Neon dense plasma focus point x-ray source for/spl les/0.25/spl mu/m lithography. In Proceedings of 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS), pages 132–132. IEEE, 1994. doi:10.1109/PLASMA.1994.588868.
S. M. P. Kalaiselvi, T. L. Tan, A. Talebitaher, et al. Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A potential source for soft X-ray lithography. Physics letters A, 377(18):1290–1296, 2013. doi:10.1016/j.physleta.2013.03.023.
S. Bing. Comparative study of dynamics and X-ray emission of several plasma focus devices. PhD Thesis Physics Division. School of Science Nanyang Technological University, 2000.
R. Baghdadi, R. Amrollahi, G. R. Etaati, et al. Characterization of the soft x-ray emission from the APF plasma focus device operated in neon. Journal of fusion energy, 30(2):137–143, 2011. doi:10.1007/s10894-010-9362-3.
A. Roomi et al. The effect of applied voltage and operating pressure on emitted X-ray from nitrogen (N2) gas in APF plasma focus device. Journal of fusion energy, 30(5):413–420, 2011. doi:10.1007/s10894-011-9395-2.
K. M. Ahmed, T. M. Allam, H. A. El-Sayed, et al. Numerical experiments to optimize argon soft x-ray yield in a low-energy plasma focus. IEEE transactions on plasma science, 47(6):2790–2800, 2019. doi:10.1109/TPS.2019.2914732.
F. N. Beg et al. Study of X-ray emission from a table top plasma focus and its application as an X-ray backlighter. J. Appl. Phys., 88(6):3225–3230, 2000. doi:10.1063/1.1287220.
H. Bhuyan, S. R. Mohanty, N. K. Neog, et al. Comparative study of soft x-ray emission characteristics in a low energy dense plasma focus device. J. Appl. Phys., 95(6):2975–2981, 2004. doi:10.1063/1.1647269.
M. Zakaullah et al. Characteristics of x-rays from a plasma focus operated with neon gas. Plasma Sources Science and Technology, 11(4):377, 2002. doi:10.1088/0963-0252/11/4/303.
M. S. Rafique, P. Lee, A. Patran, et al. Radiation emission correlated with the evolution of current sheath from a deuterium plasma focus. Journal of fusion energy, 29(3):295–304, 2010. doi:10.1007/s10894-010-9276-0.
S. Lee, S. H. Saw, L. Soto, et al. Numerical experiments on plasma focus neutron yield versus pressure compared with laboratory experiments. Plasma Physics and Controlled Fusion, 51(7):075006, 2009. doi:10.1088/0741-3335/51/7/075006.
S. Lee. Plasma focus radiative model: Review of the Lee model code. Journal of Fusion Energy, 33(4):319–335, 2014. doi:10.1007/10894-014-9683-8.
M. Akel, S. Al-Hawat, and S. Lee. Numerical experiments on soft X-ray emission optimization of nitrogen plasma in 3 kJ plasma focus SY-1 using modified Lee model. Journal of Fusion Energy, 28(4):355–363, 2009. doi:10.1007/s10894-009-9203-4.
S. Lee et al. A simple facility for the teaching of plasma dynamics and plasma nuclear fusion. American Journal of Physics, 56(1):62–68, 1988. doi:10.1119/1.15433.
S. H. Saw, P. C. K. Lee, R. S. Rawat, and S. Lee. Optimizing UNU/ICTP PFF plasma focus for neon soft X-ray operation. IEEE Transactions on Plasma Science, 37(7):1276–1282, 2009. doi:10.1109/TPS.2009.2022167.
S. Lee et al. High rep rate high performance plasma focus as a powerful radiation source. IEEE Transactions on Plasma Science, 26(4):1119–1126, 1998. doi:10.1109/27.725141.
D. Wong et al. An improved radiative plasma focus model calibrated for neon-filled NX2 using a tapered anode. Plasma Sources Science and Technology, 16(1):116, 2006. doi:10.1088/0963-0252/16/1/016.
P. Gautam, R. Khanal, S. H. Saw, and S. Lee. Comparison of measured soft X-ray yield versus pressure for NX1 and NX2 plasma focus devices against computed values using Lee model code. Journal of Fusion Energy, 34(3):686–693, 2015. doi:10.1007/s10894-015-9872-0.
V. Siahpoush, M. A. Tafreshi, S. Sobhanian, and S. Khorram. Adaptation of Sing Lee’s model to the Filippov type plasma focus geometry. Plasma Physics and Controlled Fusion, 47(7):1065, 2005. doi:10.1088/0741-3335/47/7/007.
S. Lee, S. H. Saw, P. Lee, and R. S. Rawat. Numerical experiments on plasma focus neon soft X-ray scaling. Plasma Physics and Controlled Fusion, 51(10):105013, 2009. doi:10.1088/0741-3335/51/10/105013.
M. Akel and S. Lee. Practical optimization of AECS PF-2 plasma focus device for argon soft X-ray operation. Journal of Fusion Energy, 31(2):122–129, 2012. doi:10.1007/s10894-011-9444-x.
Y. Ay. Spherical plasma focus operated with nitrogen and neon gases for soft x-rays (bremsstrahlung radiation, line radiation, and radiative recombination). Plasma Physics and Controlled Fusion, 63(7):075011, 2021. doi:10.1088/1361-6587/abf22f.
M. Akel, S. Ismael, S. Lee, et al. PF1000 high-energy plasma focus device operated with neon as a copious soft X-ray source. IEEE Transactions on Plasma Science, 45(11):2979–2983, 2017. doi:10.1109/TPS.2017.2761843.
M. Akel and S. Lee. Radiative collapse in plasma focus operated with heavy noble gases. Journal of Fusion Energy, 32(1):111–116, 2013. doi:10.1007/s10894-012-9535-3.
V. A. Gribkov et al. Plasma dynamics in the PF-1000 device under full-scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives. Journal of Physics D: Applied Physics, 40(12):3592, 2007. doi:10.1088/0022-3727/40/12/008.
M. Akel, S. Ismael, S. Lee, et al. Numerical experiments on the PF1000 plasma focus device operated with nitrogen and oxygen gases. Modern Physics Letters B, 31(16):1750167, 2017. doi:10.1142/S0217984917501676.
M. Akel et al. Experiments and simulations on the possibility of radiative contraction/collapse in the PF-1000 plasma focus. Nukleonika, 61(2):145–148, 2016. doi:10.1515/nuka-2016-0025.
S. Lee, S. H. Saw, and J. Ali. Numerical experiments on radiative cooling and collapse in plasma focus operated in krypton. Journal of Fusion Energy, 32(1):42–49, 2013. doi:10.1007/s10894-012-9522-8.
M. Akel, A. Kulińska, S. Lee, et al. Results of plasma radiative compression investigation in the PF-24 device operated with D2, Ar and (100using the 5-phase Lee model code. JApplied Radiation and Isotopes, 182(6):110118, 2022. doi:10.1016/j.apradiso.2022.110118.
P. Kubes et al. The evolution of the plasmoidal structure in the pinched column in plasma focus discharge. Plasma Physics and Controlled Fusion, 58(4):045005, 2016. doi:10.1088/0741-3335/58/4/045005.
P. Kubes et al. Characteristics of closed currents and magnetic fields outside the dense pinch column in a plasma focus discharge. Physics of Plasmas, 27(9):092702, 2020. doi:10.1063/5.0010249.
P. Kubes et al. Scenario of a magnetic dynamo and magnetic reconnection in a plasma focus discharge. Matter and Radiation at Extremes, 5(4):046401, 2020. doi:10.1063/1.5133103.
N. Benett et al. Kinetic simulations of gas breakdown in the dense plasma focus. Physics of Plasmas, 24(6):062705, 2017. doi:10.1063/1.4985313.
E. N. Hahn et al. Effect of insulator length and fill pressure on filamentation and neutron production in a 4.6 kJ dense plasma focus. Physics of Plasmas, 29(8):083508, 2022. doi:10.1063/5.0087901.
C. Pavez and L. Soto. Demonstration of X-ray emission from an ultraminiature pinch plasma focus discharge operating at 0.1 J nanofocus. IEEE Trans. Plasma Sci., 38(5):1135, 2010. doi:10.1109/TPS.2010.2045110.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 M. A. Malek, M. N. Huda, M. K. Islam, M. Akel, S. Lee

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).