Control of Diffuse Vacuum Arc Using Axial Magnetic Fields in Commercial High Voltage Switchgear

Authors

  • S. Giere Siemens AG
  • T. Heinz Siemens AG
  • A. Lawall Siemens AG
  • C. Stiehler Siemens AG
  • E. D. Taylor Siemens AG
  • S. Wethekam Siemens AG

DOI:

https://doi.org/10.14311/ppt.2019.1.19

Keywords:

high voltage, vacuum interrupter, vacuum arcs

Abstract

During the development of a commercial vacuum interrupter for application in HV (high voltage) switchgear at a rated voltage of 145kV, we investigated the behavior of vacuum arcs controlled by axial magnetic fields (AMF). AMF arc control is already extensively used in medium voltage (1-52kV) applications, the key difference is the 2-3 times larger contact gap and the corresponding reduction of the AMF strength for HV applications. We conducted several stress tests with short circuit currents up to 40kA, thus not only testing the interrupting capability, but also the electrical endurance of such a contact system. We also investigated the dielectric behavior of the vacuum interrupter by testing the capacitive switching duty. Overall, the contacts were used in about 40 operations at high currents. Despite this large number of operations, they showed a minimal amount of contact erosion and damage and demonstrated behavior very similar to the extensive experience with MV vacuum interrupters. In line with simulation results, we conclude that even at high contact gaps and currents, a diffuse vacuum arc was maintained which distributed the arc energy evenly over the contacts.

Author Biography

A. Lawall, Siemens AG

With best regards,Andreas Lawall Siemens AG Energy Management Division Medium Voltage & Systems OC 3 Vacuum Interrupter EM MS R&D OC 3 Rohrdamm 88 13629 Berlin, Germany Tel.: +49 30 386-27236 Fax: +49 30 386-27455 Mobile: +49 172 9715557 mailto:andreas.lawall@siemens.com www.siemens.com/ingenuityforlife Siemens Aktiengesellschaft: Chairman of the Supervisory Board: Jim Hagemann Snabe; Managing Board: Joe Kaeser, Chairman, President and Chief Executive Officer; Roland Busch, Lisa Davis, Klaus Helmrich, Janina Kugel, Cedrik Neike, Michael Sen, Ralf P. Thomas; Registered offices: Berlin and Munich, Germany; Commercial registries: Berlin Charlottenburg, HRB 12300, Munich, HRB 6684; WEEE-Reg.-No. DE 23691322

References

P. G. Slade et al. The development of a vacuum interrupter retrofit for the upgrading and life extension of 121 kV–145 kV oil circuit breakers. IEEE Trans. Power Del., 6(3):1124/1131, 1991. doi:10.1109/61.85857.

L. Falkingham and M. Waldron. Vacuum for HV applications - perhaps not so new? - thirty years service experience of 132 kV vacuum circuit breaker. Proc. 22nd ISDEIV, 1:200–203, 2006. doi:10.1109/DEIV.2006.357267.

R. Smeets et al. The impact of the application of vacuum switchgear at transmission voltages. Cigre Working Group A3.27; Cigre Technical Report, (589), 2014.

R. Renz. High voltage vacuum interrupters - technical and physical feasibility versus economical efficiency. Proc. 22nd ISDEIV, 1:257–262, 2006. doi:10.1109/DEIV.2006.357281.

X. Godechot, S. Chakraborty, A. Girodet, and P. Vinson. Design and tests of vacuum interrupters for high voltage circuit breakers. Proc. 26th ISDEIV, 1:417–420, 2014. doi:10.1109/DEIV.2014.6961708.

Z. Liu, J. Wang, S. Xiu, Z. Wang, S. Yuan, L. Jin, H. Zhou, and R. Yang. Development of high-voltage vacuum circuit breakers in China. IEEE Trans. Plasma Sci, 35(4):856–865, 2007. doi:10.1109/TPS.2007.896929.

J. Ryu, Y.-G. Kim, J. Choi, and S. Park. The experimental research of 170 kV VCB using single-break vacuum interrupter. Proc. 25th ISDEIV, 2:493–496, 2012. doi:10.1109/DEIV.2012.6412563.

X. Yao, J. Wang, Y. Geng, J. Yan, Z. Liu, J. Yao, and P. Liu. Development and type test of a single-break 126-kV/40-kA-2500-A vacuum circuit breaker. EEE

Trans. Power Del., 31(1):182, 2016. doi:10.1109/TPWRD.2015.2456033.

H. C. Ross. Vacuum power switches: 5 years of field application and testing. Trans. AIEE Part III: Power App. Syst., 71:758, 1961. doi:10.1109/AIEEPAS.1961.4501132.

H. Urbanek, K. R. Venna, and N. Anger. Vacuum circuit breakers - promising switching technology for pumped storage power plants up to 450 MVA. Proc. ICEPE 4th Int. Conf. Electr. Power Equip. - Switching Technol., page 107, 2017.

S. Yanabu, S. Souma, T. Tamagawa, S. Yamashita, and T. Tsutsumi. Vacuum arc under an axial magnetic field and its interrupting ability. Proc. IEE, 126(4):313, 1979. doi:10.1049/piee.1979.0079.

T. Bonicelli, A. DeLorenzi, D. Hrabal, R. Piovan, E. Saches, E. Sapietro, and S. R. Shaw. The European development of a full scale switching unit for the ITER switching and discharging networks. Fusion Eng. Design, 75:193, 2005. doi:10.1016/j.fusengdes.2005.06.225.

A. Zamengo. Operational experience of the 50 kA–35 kV RFX-mod DC-current interruption system. Proc. 28th ISDEIV, 2:543–546, 2018.

P. G. Slade. The Vacuum Interrupter: Theory Design and Application. CRC Press, Boca Raton, 2008.

R. Renz. Vacuum Interrupters. In Vacuum Electronics: Components and Devices, chapter 8. Springer, 2008.

N. Wenzel, A. Lawall, U. Schümann, and S. Wethekam. Combined experimental and theoretical study of constriction threshold of large-gap AMF vacuum arcs. Proc. 26th ISDEIV, 1:193, 2014.

J. Kusserow and R. Renz. Method for opening the contact gap of a vacuum interrupter. U.S. Patent 7,334,319, 2008.

J. Yan, Z. Liu, Y. Geng, S. Zhang, and Y. Zhang. Investigation on X-radiation for 126 kV vacuum interrupters. Plasma Sci. Technol., 18(5):577, 2016. doi:10.1088/1009-0630/18/5/22.

J. Brucher, S. Giere, C. Watier, A. Hessenmüller, and P. E. Nielsen. 3AV1FG - 72.5 kV prototype vacuum circuit breaker (case study with pilot customers). 44th Int. Conf. Large High Voltage Electric Systems, A3:101, 2012.

S. Giere, T. Heinz, A. Lawall, C. Stiehler, E. D. Taylor, N. Wenzel, and S. Wethekam. X-radiation emission of high-voltage vacuum interrupters: Dose control under testing and operating conditions. Proc. 28th ISDEIV, pages 523–526, 2018.

W. Hartmann, A. Hauser, A. Lawall, R. Renz, and N. Wenzel. The 3D numerical simulation of a transient vacuum arc under realistic spatial AMF profiles. Proc. 24th ISDEIV, Braunschweig, 2:285–288, 2010. doi:10.1109/DEIV.2010.5625791.

N. Wenzel, S. Kosse, A. Lawall, R. Renz, and W. Hartmann. Numerical simulation of multi-component arcs in high-current vacuum interrupters. Proc. 25th ISDEIV, 2:321–324, 2012. doi:10.1109/DEIV.2012.6412518

Downloads

Published

2019-07-31

Issue

Section

Articles