Formation of the Upstream Region in HV Gas Blast Interrupters with Synchronous Gas Injection

Authors

  • N. K. Kurakina SPbPU, IEE RAS
  • V. Ya. Frolov SPbPU
  • E. N. Tonkonogov SPbPU

DOI:

https://doi.org/10.14311/ppt.2019.1.43

Keywords:

high-voltage gas blast interrupter, air blast circut breaker, interruption capability, arc quenching, synchronous gas injection, gas-dynamics, numerical simulation, OpenFOAM

Abstract

The problem of a synchronous gas injection at the vicinity of current zero for high voltage gas blast circuit breakers~(GCB) is discussed. The basic aim of the investigation is to improve the efficiency of arc quenching in GCB by increasing interruption ability without changes in drive parameters. The paper reviews the upstream region influence on the interruption capability, gas injection - mass flow interactions at the region between electrical contact and nozzle throat of GCB.
Numerical simulation is used to calculate gas--dynamics parameters at the upstream region of mono--flow GCB. The mass discharged as a result of the synchronous gas injection can rapidly modify both the density and pressure at the nozzle throat, regulate flow velocity in the research region. The selected method of the gas injection effects the breaking performance in the arc quenching device strongly. Some calculation results are presented.

 

Author Biographies

N. K. Kurakina, SPbPU, IEE RAS

Postgraduate, junior researcher

V. Ya. Frolov, SPbPU

Professor, Doctor of Engineering

E. N. Tonkonogov, SPbPU

Associate Professor, Doctor of Engineering

References

H. Hama, S. Okabe, R. Buhler, D. Gautschi, A. Girodet, M. Hering, D. Imamovic, K. Juhre, Y. Kieffel, J. Kindersberger, W. Koltunowicz, J. Lopes-Roldan, S. Neuhold, C. Neumann, R. Pietsch, U. Riechert, T. Rokunohe, U. Schichler, and T. Yasuoka. Dry air, N2, CO2 and N2/SF6 mixtures for gas-insulated systems. Electra, page 71, Aug 2018.

M. Seeger, R. Smeets, J. Yan, H. Ito, M. Claessens, E. Dullni, L. Falkingham, C. Franck, F. Gentils, W. Hartmann, Y. Kieffel, S. Jia, G. Jones, J. Mantilla, S. Pawar, M. Rabie, P. Robin-Jouan, H. Schellekens, J. Spencer, T. Uchii, X. Li, and S. Yanabu. Recent trends in development of high voltage circuit breakers with SF6 alternative gas. Plasma Physics and Technology, 4(1):8–12, 2017. doi:10.14311/ppt.2017.1.8.

R. Thomas. Controlled switching of high voltage SF6 circuit breakers for fault interruption, 2004. Thesis for the degree of licentiate of engineering. http://webfiles. portal.chalmers.se/et/Lic/ThomasRichardLic.pdf.

International standard IEC 62271-100. High-voltage switchgear and controlgear. Part 100. Alternating current circuit-breakers, 2012.

A. Briggs and L. King. Factors affecting thermal breakdown in gas blast interrupters. IEE Conf. Dev in Design and Performance, London, pages 52–55, Nov 1979.

K. Ragaller. Current Interruption in High Voltage Networks. Moscow, Energoizdat, 1981.

E. Tonkonogov. HV AC Circuit Breakers. Saint Petersburg, Polytechnic University Press, 2015.

A. Briggs. The contribution of axial a radial components of gas velocity to the thermal interruption capability of a gas blast circuit breaker. Proceedings of the 7th International Conference on Gas Discharges and their Applications, UK, London, pages 28–31, 1982.

G. Frind and J. Rich. Recovery speed of axial flow gas blast interrupter: dependence on pressure and di/ dt for air and SF6. IEEE Transactions on Power Apparatus and Systems, PAS 93(5):1675–1684, Sep 1974. doi:10.1109/TPAS.1974.293900.

T. Morita, M. Iwashita, and Y. Nitta. A theoretical analysis of dynamic arcs and test results of model synchronous air blast circuit breakers. IEEE Transactions on Power Apparatus and Systems, PAS-97(3):940–949, May 1978. doi:10.1109/TPAS.1978.354567.

N. Kurakina, M. Pinchuk, A. Budin, A. Smirnovsky, and V. Frolov. Numerical simulation using openfoam of gas-dynamics in the discharge chamber with a movable electrode. St. Petersburg Polytechnic University Journal of Engineering Science and Technology, 24(2):69–81, 2018. doi:10.18721/JEST.240206.

N. Kurakina, M. Pinchuk, A. Budin, and A. Smirnovsky. Analysis of the gas dynamics in the discharge chamber with a movable electrode. Journal of Physics: Conference Series, 1135:012094, Dec 2018. doi:10.1088/1742-6596/1135/1/012094.

A. Budin, M. Pinchuk, V. Leontev, A. Leks, N. Kurakina, A. Kiselev, J. Simakova, and V. Frolov. Experimental stand for investigations of insulator degradation and electrode erosion in high-current breaker. Plasma Physics and echnology, 4(2):120–123, 2017. doi:10.14311/ppt.2017.2.120.

A. Budin, M. Pinchuk, V. Kuznetsov, V. Leontev, and N. Kurakina. An experimental setup for investigation of arc and erosion processes in high-voltage high-current breakers. Instruments and Experimental Techniques, 60(6):837–842, Nov 2017. doi:10.1134/S0020441217060033.

Downloads

Published

2019-07-31

Issue

Section

Articles