Estimation of the Intensively Blasted Electric Arc Model Sensitivity to Selected Variables

Authors

  • J. Senk Faculty of Electrical Engineering and Communication, Brno University of Technology
  • I. Laznickova Faculty of Electrical Engineering and Communication, Brno University of Technology
  • I. Jakubova Faculty of Electrical Engineering and Communication, Brno University of Technology
  • O. Coufal Faculty of Electrical Engineering and Communication, Brno University of Technology

DOI:

https://doi.org/10.14311/ppt.2019.1.47

Keywords:

electric arc, arc heater, argon, modeling

Abstract

Results of measurements carried out on the fabricated experimental modular-type arc heater serve as input data for the designed simplified model of the intensively blasted electric arc burning in argon inside the cylindrical arc heater's anode channel. The axial dependence of the arc temperature and radius is expressed using the exponent, the current density on the cathode tip and the arc temperature at the end of the near-cathode boundary layer. These quantities form the vector of state variables that is sought to minimize the value of the objective function expressing the deviations between measured and computed values. On a typical example, the paper demonstrates the sensitivity of the modelling to individual state variables.

References

J. Senk, I. Laznickova, and I. Jakubova. Estimation of electric arc power loss using net emission coefficient of argon. In Proceedings of EPE 2018. Brno Univ. of Technology, 2018. doi:10.1109/EPE.2018.8396015.

J. Senk, I. Jakubova, and I. Laznickova. Analysis of intensively blasted electric arc burning in the arc heater’s anode channel. Acta Polytechnica, 56(5):395–401, 2016. doi:10.14311/AP.2016.56.0395.

J. Senk, I. Jakubova, and I. Laznickova. Updated version of the simplified model of intensively blasted electric arc. Acta Polytechnica, 58(4):264–270, 2018. doi:10.14311/AP.2018.58.0264.

A. Farmer and G. Haddad. Material Functions and Equilibrium Composition of argon and Nitrogen Plasma. Csiro Division of Applied Physics, 1989.

O. Coufal. Composition and thermodynamic properties of thermal plasma up to 50 kk. J Phys D Appl. Phys, 40(11):3371–3385, 2007. doi:10.1088/0022-3727/40/11/018.

P. Kloc. Computed values of net emission coefficient of argon. Private communication, 2018.

H. Schlichting. Grenzschicht Theorie. Verlag G. Braun, Karlsruhe, Germany, 1965.

J. Lowke. Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J Quant Spectrosc Radiat Transfer, 14:111–122, 1974. doi:10.1016/0022-4073(74)90004-1.

Downloads

Published

2019-07-31

Issue

Section

Articles