A Computational Model for High Current Density Arc Plasmas

Authors

  • M. Alija Technische Universität Braunschweig, Institute for High Voltage Technology and Electrical Power Systems, Schleinitzstrasse 23, 38106 Braunschweig Germany
  • M. Kurrat Technische Universität Braunschweig, Institute for High Voltage Technology and Electrical Power Systems, Schleinitzstrasse 23, 38106 Braunschweig Germany

DOI:

https://doi.org/10.14311/ppt.2019.2.115

Keywords:

computational plasma physics, high current density arc plasma, magnetohydrodynamics

Abstract

A computational model for high current density arc plasmas is developed. Under the assumption of thermodynamic equilibrium the arc plasma is described as a compressible laminar fluid based on the magnetohydrodynamic (MHD) equations and the transport and thermodynamic properties of air. The arc plasma is studied in time and space on macroscopic values such as the temperature and the pressure. The simulation results are discussed and future research work is identified addressing the scientific domain of high current density arc plasmas.

References

C. Sander, J.-E. Schmutz, and M. Kurrat. Analysis for radiation discretization for modelling spark gap for surge currents. Plasma Physics and Technology, 4(1):56–59, 2017. doi:10.14311/ppt.2017.1.56.

P. Huguenot. Axisymmetric high current arc simulations in generator circuit breakers based on realgas magnetohydrodynamics models. ETH Zurich, Zurich, 2008. doi:10.3929/ethz-a-005579457.

M. Kumar. Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. ETH Zurich, Zurich, 2009. doi:10.3929/ethz-a-005927654.

S. Coulombe and J. Meunier. Arc-cold cathode interactions: parametric dependence on local pressure. Plasma Sources Science and Technology, 6(4):11, 1997. doi:10.1088/0963-0252/6/4/008.

J. H. Ferziger and M. Perić. Numerische Strömungsmechanik. 3. Springer, 2008.

H. Goedbloed and S. Poedts. Principles of Magnetohydrodynamics. Cambridge University Press, 2004.

F. F. Chen. Introduction to Plasma Physics and Controlled Fusion. Springer International Publishing, 2016.

E. Ivers-Tiffée and W. von Münch. Werkstoffe der Elektrotechnik. B.G. Teubner Verlag, 2007.

M. F. Modest. Radiative Heat Transfer. Academic Press, Elsevier, 2013.

Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes. Net emission coefficient of air thermal plasmas. Journal of Physics, 35(2925):10, 2002. doi:10.1088/0022-3727/35/22/306.

T. Billoux, Y. Cressault, P. Teulet, and A. Gleizes. Calculation of the net emission coefficient of an air thermal plasma at very high pressure. Journal of Physics, 406(012010):11, 2012. doi:10.1088/1742-6596/406/1/012010.

P. J. Mohr, D. B. Newell, and B. N. Taylor. Codata recommended values of the fundamental physical constants: 2014. Journal of Physical and Chemical Reference Data, 45(4):74, 2016. doi:10.1063/1.4954402.

D. Angola, G. Colonna, C. Gorse, and M. Capitelli. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. European Physical Journal, 46:129–150, 2008. doi:10.1140/epjd/e2007-00305-4.

M. Bartelmann, B. Feuerbacher, T. Krüger, D. Lüst, A. Rebhan, and A. Wipf. Theoretische Physik 4 Thermodynmaik und Statistische Physik. Springer Spektrum, 2018.

Downloads

Published

2019-09-10

Issue

Section

Articles