Transport Properties of Thermal Plasma Containing Fluoro-Nitrile (C<sub>4</sub>F<sub>7</sub>N)-Based Gas Mixtures

Authors

  • V. R. T. Narayanan Eaton European Innovation Center, Borivojova 2380, 252 63 Roztoky, Czech Republic
  • Ch. Ruempler Eaton Industries GmbH, Hein-Moeller-Straße 7-11, 53115 Bonn, Germany
  • M. Gnybida Eaton European Innovation Center, Borivojova 2380, 252 63 Roztoky, Czech Republic
  • P. Slavíček Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic

DOI:

https://doi.org/10.14311/ppt.2019.2.131

Keywords:

Fluoro-nitrile, thermal plasma, transport properties, SF6 alternative

Abstract

Gas mixtures containing fluoro-nitriles C<sub>4</sub>F<sub>7</sub>N or fluoro-ketones C<sub>5</sub>F<sub>10</sub>O as minority components (<20%) have been identified as promising alternatives to SF<sub>6</sub> in medium voltage gas-insulated switchgear (GIS) applications, because of their low Global Warming Potential together with their dielectric strength values being comparable to SF<sub>6</sub>. The buffer gases in such fluoro-nitrile or fluoro-ketone based gas mixtures are usually N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub>, or air. In this contribution, we provide calculation results of transport properties, assuming local thermodynamic equilibrium (LTE), of thermal plasma containing following gas mixtures: C<sub>4</sub>F<sub>7</sub>N-CO<sub>2</sub> and C<sub>4</sub>F<sub>7</sub>N-CO<sub>2</sub>-O<sub>2</sub>. The modifications in the thermodynamic and transport properties upon the addition of oxygen to the C<sub>4</sub>F<sub>7</sub>N-CO<sub>2</sub> mixtures in the temperature range 300&thinsp;K-30&thinsp;kK at 1&thinsp;bar are provided and discussed. These properties have been utilized to calculate the plasma temperature profile for a free-burning arc in a companion paper.

References

H. Nechmi et al. Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Trans. Dielectr. Electr. Insul, 23(5):2587–2593, 2016. doi:10.1109/TDEI.2016.7736816.

Y. Wu et al. Properties of C4F7N-CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients. Journal of Physics D: Applied Physics, 51(15):1552061–12, 2018. doi:10.1088/1361-6463/aab421.

G. Petersson et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys., 89(4):2193–218, 1988. doi:10.1063/1.455064.

L. Curtiss et al. Gaussian-4 theory. J. Chem. Phys., 126(8):0841081–12, 2007. doi:10.1063/1.2436888.

G. Godin and Y. Trepanier. A robust and efficient method for the computation of equilibrium composition in gaseous mixtures. Plasma Chem Plasma Process, 24(3):447–473, 2004. doi:10.1007/s11090-004-2279-8.

S. Chapman and T. Cowling. The mathematical theory of non-uniform gases. Third edition. John Wiley Inc., 1970.

A. Yang et al. Thermodynamic properties and transport coefficients of CO2-Cu thermal plasmas. Plasma Chem Plasma Process, 36(4):1141–1160, 2016. doi:10.1007/s11090-016-9709-2.

Downloads

Published

2019-09-10

Issue

Section

Articles