Investigating of the Recovery Behaviour of a Small Switching Gap after Current Interuption

Authors

  • D. Bösche Institute for High Voltage Technology and Electrical Power Systems - elenia, TU Braunschweig, Schleinitzstrasse 23, 38106 Braunschweig
  • M. Alija Institute for High Voltage Technology and Electrical Power Systems - elenia, TU Braunschweig, Schleinitzstrasse 23, 38106 Braunschweig
  • M. Hilbert Institute for High Voltage Technology and Electrical Power Systems - elenia, TU Braunschweig, Schleinitzstrasse 23, 38106 Braunschweig
  • M. Kurrat Institute for High Voltage Technology and Electrical Power Systems - elenia, TU Braunschweig, Schleinitzstrasse 23, 38106 Braunschweig

DOI:

https://doi.org/10.14311/ppt.2017.2.165

Keywords:

plasma temperature, switching gap, arc, current zero, reignition, Weibull distribution

Abstract

The recovery behaviour of switching arcs in a small gap was investigated experimentally. Therefore a simple mechanical model switch without an arcing chamber was designed. For the investigation the current carring contacts are separated. After various arcing times, the current is interrupted by an electronic switch. At a fixed contact distance, the switching gap was tested with variable voltages to investigate the dielectric strength. Based on these results the recovery behaviour was studied using the Weibull distribution function.

References

A. Erk. Grundlagen der Schaltgerätetechnik. Springer Verlag, 1974.

M. Lindmayer. Schaltgerätetechnik. Springer Verlag, 1999.

P. Slade. Electrical contacts: Principles and Applications. Taylor and Francis Group LLC, 2014.

M. Lindmayer, E. Marzahn, A. Mutzke, T. Rüther, and M. Springstubbe. The process of arc splitting between metal plates in low voltage arc chutes. IEEE Trans. on Comp. and Pack. Techn., 2006.

A. Mutzke, T. Rüther, M. Lindmayer, and M. Kurrat. Arc behavior in low-voltage arc chambers. Eur. Phys. J. Appl. Phys, 2010. doi:10.1109/TCAPT.2006.875902.

C. Fievet, M. Barrault, P. Chevrier, and P. Petit. Experimental and numerical studies of arc restrikes in low-voltage circuit breakers. IEEE Trans. on Plasma Science, 1997. doi:10.1109/27.649604.

W. Rieder. Plasma und Lichtbogen. Vieweg Verlag, 1967.

J. Slepian. Extinction of an a.c. arc. Transactions of the American Institute of Electrical Engineers, 47(4), 1928. doi:10.1109/T-AIEE.1928.5055155.

M. Schmelzle. Grenzen der Selbstlöschung kurzer Lichtbogenstrecken bei Wechselstrombelastung. PhD thesis TU Braunschweig, 1968.

K. Troeger. Ueber die Wiederverfestigung von Lichtbogenstrecken nach dem Stromnullwerden wandernder Wechselstromlichtbögen in engen Spalten. PhD thesis TU Braunschweig, 1960.

Y. Tanaka. Prediction of dielectric properties of N2/O2 mixtures in the tempreature range of 300–3500 K. Journal of Physics, 37, 2004. doi:10.1088/0022-3727/37/6/008.

Y. Tanaka. Influence of copper vapor contamination on dielectric properties of hot air at 300–3500 K in atmospheric pressure. IEEE Trans. on Diel. and Elec. Ins., 12(3):504–512, 2005. doi:10.1109/TDEI.2005.1453455.

G. Timoshenko. Die lichtbogenwiederzündung als durchschlag in stark ionisierten gasen. Zeitschrift fuer Physik, 84(11):783–793, 1945. doi:10.1007/BF01330502.

W. Hauschild and W. Mosch. Statistik fuer Elektrotechniker. Berlin Verlag Technik, 1984.

A. Küchler. Hochspannungstechnik: Grundlagen - Technologien - Anwendungen. Springer-Verlag, 2009.

Downloads

Published

2017-02-11

Issue

Section

Articles