An Efficient Implementation of the Finite-volume Method For the Solution of Radiation Transport in Circuit Breakers

Authors

  • A. Mazaheri École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Campus de l’Université de Montréal, 2500 chemin de Polytechnique, Montréal (Québec), H3T 1J4
  • J. Y. Trépanier École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Campus de l’Université de Montréal, 2500 chemin de Polytechnique, Montréal (Québec), H3T 1J4
  • R. Camarero École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Campus de l’Université de Montréal, 2500 chemin de Polytechnique, Montréal (Québec), H3T 1J4
  • P. Robin-Jouan GE Grid-Solutions, Villeurbanne

DOI:

https://doi.org/10.14311/ppt.2017.2.177

Keywords:

radiation, circuit-breaker, finite-volume method, space-marching

Abstract

In this paper, we propose to revisit the method to solve the radiation transport equation in circuit breakers to reduce the computation time. It is based on an explicit approach using a space marching algorithm. The method can further be accelerated using a Cartesian grid and using the axisymmetric assumption. Comparisons performed in terms of accuracy and efficiency between the P1 model, the implicit finite-volume discrete ordinate method and the space-marching finite-volume discrete ordinate method show that the explicit approach is more that an order of magnitude faster than the implicit approach, for the same accuracy.

References

H. Nordborg and A.A. Iordanidis. Self-consistent radiation based modelling of electric arcs: I. efficient radiation approximations. Journal of Physics D: Applied Physics, 41(13):135205, 2008. doi:10.1088/0022-3727/41/13/135205.

A.A. Iordanidis and C.M. Franck. Self-consistent radiation-based simulation of electric arcs: II. application to gas circuit breakers. Journal of Physics D: Applied Physics, 41(13):135206, 2008. doi:10.1088/0022-3727/41/13/135206.

S.D. Eby, J.Y. Trépanier, and X.D. Zhang. Modelling radiative transfer in SF6 circuit-breaker arcs with the P1 approximation. Journal of Physics D: Applied Physics, 31(13):1578, 1998. doi:10.1088/0022-3727/31/13/012.

M.F. Modest. Chapter 16 - the method of spherical harmonics (PN -approximation). In M.F. Modest, editor, Radiative Heat Transfer (Third Edition), pages 495–540. Academic Press, Boston, 2013.

M. Melot, J.Y. Trépanier, R. Camarero, and E. Petro. Comparison of numerical models in radiative heat transfer with application to circuit-breaker simulations. Mathematics and Computers in Simulation, 82(12):2982 – 2996, 2012. doi:10.1016/j.matcom.2012.07.002.

M.Y. Kim. Assessment of the axisymmetric radiative heat transfer in a cylindrical enclosure with the finite volume method. International Journal of Heat and Mass Transfer, 51(21):5144–5153, 2008. doi:10.1016/j.ijheatmasstransfer.2008.03.012.

S. Dua and P. Cheng. Multi-dimensional radiative transfer in non-isothermal cylindrical media with non-isothermal bounding walls. International Journal of Heat and Mass Transfer, 18(2):245–259, 1975. doi:10.1016/0017-9310(75)90157-X.

Downloads

Published

2017-02-12

Issue

Section

Articles