Thermal Plasma of Electric Arc Discharge Between Cu-Cr Composite Electrodes

Authors

  • A. Veklich Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • V. Boretskij Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • M. Kleshych Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • S. Fesenko Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • A. Murmantsev Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • A. Ivanisik Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv
  • O. Khomenko Frantsevich Institute for Problems of Materials Science NAS of Ukraine
  • A. Tolochyn Frantsevich Institute for Problems of Materials Science NAS of Ukraine
  • M. Bartlova Brno University of Technology

DOI:

https://doi.org/10.14311/ppt.2019.1.27

Keywords:

optical emission spectroscopy, plasma of arc discharge, erosion of surface electrode, composite materials, electrical contact

Abstract

This work deals with investigations of model plasma source realised as electric arc discharge in gas atmosphere between Cu-Cr composite electrodes. Radial distributions of temperature and electron density in arc plasma column were studied by optical emission spectroscopy. The content of electrode metals' vapours in discharge was calculated on the base of experimentally obtained plasma parameters as initial data. So, in this way the erosion properties of such composition can be determined.

References

P. G. Slade. Electrical contacts, principles and applications. CRC Press, 2014.

A. Papillon, J. Missiaen, J. Chaix, S. Roure, and H. Schellekens. Sintering mechanisms of Cu-Cr metallic composites. Int. Journal of Refractory Metals and Hard Materials, 65:9–13, 2016. doi:10.1016/j.ijrmhm.2016.11.010.

Z. Wang, W. Yan, Y. Jiang, Y. Li, J. Liu, W. Wang, Y. Geng, J. Wang, Z. Liu, and L. Sun. The effect and dynamic behavior of particles in high-current vacuum arc interruptions. Journal of Physics D: Applied Physics, 52(7):1–20, 2018. doi:10.1088/1361-6463/aaf557.

R. Methling, S. Gorchakov, M. Lisnyak, S. Franke, A. Khakpour, S. Popov, A. Batrakov, D. Uhrlandt, and K. Weltmann. Spectroscopic investigation of a Cu-Cr vacuum arc. IEEE Transactions on plasma science, 43(8):2303–2309, 2015.

doi:10.1109/TPS.2015.2443856.

R. Semenyshyn, A. Veklich, I. Babich, and V. Boretskij. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures. Advances in Space Research, 54:1235–1241, 2014. doi:10.1016/j.asr.2013.11.042.

K. Bockasten. Transformation of observed radiances into radial distribution of the emission of a plasma. Journ. of Opt. Soc. of Am, 9:943–947, 1961. doi:10.1364/JOSA.51.000943.

A. Veklich, A. Lebid, and T. Tmenova. Spectroscopic data of W I, Mo I and Cr I spectral lines: selection and analysis. J. Astrophys. Astr., 36(4):589–604, 2015. doi:10.1007/s12036-015-9342-0.

J. J. Lowke. Simple theory of free-burning arcs. J. Phys. D: Appl. Phys., 12:1873–1886, 1979. doi:10.1088/0022-3727/12/11/016.

V. Boretskij, Y. Cressault, P. Teulet, and V. A. Plasma of electric arc discharge incarbon dioxide with copper vapours. XIX th Symposium on Physics of Switching Arc (FSO 2011), Brno, Czech Republic, pages 121–124, 5-9 September 2011.

A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, P. Teulet, Y. Bondarenko, and L. Kryachko. Thermal plasma of electric arc discharge in air between composite Cu-C electrodes. Problems of atomic science and technology. Series: Plasma Physics, 6:226–229, 2014.

A. Murmantsev, A. Veklich, V. Boretskij, S. Fesenko, and M. Kleshych. Thermal plasma of electric arc discharge between evaporated electrodes. Plasma Physics and Technologies, 5(2):87, 2018.

Downloads

Published

2019-07-31

Issue

Section

Articles