Analysis of C2 Swan Bands in Ablation-Dominated Arcs in CO2 Atmosphere

Authors

  • R. Methling Leibniz Institute for Plasma Science and Technology (INP Greifswald)
  • St. Franke Leibniz Institute for Plasma Science and Technology (INP Greifswald)
  • N. Götte RWTH Aachen University, Institute for High Voltage Technology
  • S. Wetzeler RWTH Aachen University, Institute for High Voltage Technology
  • D. Uhrlandt Leibniz Institute for Plasma Science and Technology (INP Greifswald)

DOI:

https://doi.org/10.14311/ppt.2019.1.82

Keywords:

ablation, switching arc, spectroscopy, PTFE, CO2

Abstract

A model circuit breaker in a high-pressure chamber filled with CO2 atmosphere is used to operate a wall-stabilized arc of several kilo-amperes between tungsten-copper electrodes surrounded by polytetrafluoroethylene nozzles. Optical emission spectroscopy (OES) is carried out via quartz plates inserted into the nozzles using a combination of an imaging spectrometer either with a high-speed video camera or with an ICCD camera. Depending on the nozzle geometry and the current, continuum from C2 Swan bands was detected as absorption as well as emission pattern. After current zero, optical absorption spectroscopy (OAS) using a xenon flashlamp as broadband background radiator was applied. An absorption around 493 nm was detected and attributed to CuF molecules. The study proofs the existence of C2 in the active phase and the formation of CuF near to current zero.

References

R. Methling, S. Franke, D. Uhrlandt, S. Gorchakov, F. Reichert, and A. Petchanka. Spectroscopic study of arc temperature profiles of a switching-off process in a model chamber. Plasma Phys. Technol., 2(2):163–166, 2015.

R. Kozakov, M. Kettlitz, K.-D. Weltmann, A. Steffens, and C. M. Franck. Temperature profiles of an ablation controlled arc in PTFE: I. spectroscopic measurements. J. Phys. D: Appl. Phys., 40(8):2499–2506, 2007. doi:10.1088/0022-3727/40/8/013.

D. Eichhoff, P. Nikolic, and A. Schnettler. Basic study on the dynamic behaviour of asymmetrically blown arcs in non–rotationally symmetric nozzle arrangements. In Proc. XXth Symposium on Physics of Switching Arc, pages 126–129. Brno University of Technology, 2013.

R. Methling, A. Khakpour, S. Wetzeler, and D. Uhrlandt. Investigation of an ablation–dominated arc in a model chamber by optical emission spectroscopy. Plasma Phys. Technol., 4(2):153–156, 2017. doi:10.14311/ppt.2017.2.153.

P. Nikolic, M. Seeger, and A. Schnettler. Investigations on the dielectric recovery of SF6 and air in insulating nozzles. In Proc. XXth Symposium on Physics of Switching Arc, pages 265–268. Brno University of Technology, 2013.

D. Eichhoff, A. Kurz, R. Kozakov, G. Gött, D. Uhrlandt, and A. Schnettler. Study of an ablation–dominated arc in a model circuit chamber. J. Phys. D: Appl. Phys., 45:305204, 2012. doi:10.1088/0022-3727/45/30/305204.

K.-D. Weltmann, R. Methling, N. Götte, S. Wetzeler, and D. Uhrlandt. Optical emission spectroscopy of ablation–dominated arcs during high–current phase and around current zero. In Proc. XXIIth Int. Conf. on Gas Discharges and Their Applications, volume 1, pages 83–86. Serbian Academy of Sciences and Arts, 2018.

M. Seeger, J. Tepper, T. Christen, and J. Abrahamson. Experimental study on ptfe ablation in high voltage circuit-breakers. J. Phys. D: Appl. Phys., 39(23):5016–5024, 2006. doi:10.1088/0022-3727/39/23/018.

M. Seeger, L. Niemeyer, T. Christen, M. Schwinne, and R. Dommerque. An integral arc model for ablation controlled arcs based on CFD simulations. J. Phys. D: Appl. Phys., 39(10):2180–2191, 2006. doi:10.1088/0022-3727/39/10/029.

R. Methling, N. Götte, S. Wetzeler, D. Uhrlandt, and K.-D. Weltmann. Investigation of C2 swan bands in optical emission and absorption spectroscopy of ablation–dominated arcs. In Proc. XXIIth Int. Conf. on Gas Discharges and Their Applications, volume 1, pages 227–230. Serbian Academy of Sciences and Arts, 2018.

S. S. Harilal, R. C. Issac, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan. Optical emission studies of C2 species in laser–produced plasma from carbon. J. Phys. D: Appl. Phys., 30:1703–1709, 1997. doi:10.1088/0022-3727/30/12/003.

J. J. Camacho, L. Diaz, M. Santos, D. Reyman, and J. M. L. Poyato. Optical emission spectroscopic study of plasma plumes generated by IR CO2 pulsed laser on carbon targets. J. Phys. D: Appl. Phys., 41:105201, 2008. doi:10.1088/0022-3727/41/10/105201.

H. S. Park, S. H. Nam, and S. M. Park. Optical emission studies of a plume produced by laser ablation of a graphite target in a nitrogen atmosphere. Bull. Korean Chem. Soc., 25(5):620–626, 2004. doi:10.5012/bkcs.2004.25.5.620.

C. G. Parigger, J. O. Hornkohl, and L. Nemes. Time-resolved spectroscopy diagnostic of laser-induced optical breakdown. Int. J. Spectroscopy, 2010:593820, 2010. doi:10.1155/2010/593820.

J. Cheon, H.-K. Kang, and J. I. Zink. Spectroscopic identification of gas phase photofragments from coordination compound chemical vapor deposition precursors. Coordination Chem. Rev., 200–202:1009–1032, 2000. doi:10.1016/S0010-8545(00)00325-8.

Downloads

Published

2019-07-31

Issue

Section

Articles