Arcing Behaviors in the Large-capacity HV SF6 Gas-blast Interrupters

Authors

  • S. A. Averyanova Peter the Great St. Petersburg Polytechnic University
  • E. Tonkonogov Peter the Great St. Petersburg Polytechnic University

DOI:

https://doi.org/10.14311/ppt.2019.2.140

Keywords:

dielectric strength recovery, turbulence, nozzle geometry, SF6 circuit breaker

Abstract

A comprehension of the dielectric strength recovery processes during the interruption of short-circuit currents in the high-voltage SF6 gas-blast circuit breakers is necessary for their modernisation in order to increase the rated voltage and short circuit breaking current per one break. This paper presents numerical results of the turbulence effects on the interruption ability in the SF6 extinguishing arc chamber.

References

E. Schade. Similarity of the dielectric recovery characteristic of axially blown arcs in SF6. In Proc. 8-th Conf. on Gas Discharges, Oxford, pages 50–53, 1985.

S. Yanabu, H. Mizoguchi, A. Kobayashi, Y. Ozaki, and Y. Murakami. Factor influencing the interruption ability of SF6 puffer breaker and development of 300 kV-50 kA one-break circuit breaker. IEEE Trans. on Power App. and Syst., PAS-101(6):1511–1518, 1982. doi:10.1109/TPAS.1982.317199.

High-voltage switchgear and controlgear - part 100: Alternating current circuit-breakers. IEC 62271-100:2008 ed2.0.

H. Ikeda, T. Ueda, A. Kobayashi, M. Yamamoto, and Y. S. Development of large-capacity, SF6 gas interruption chamber and its application to GIS. IEEE Trans. on Power App. and Syst., PAS-103(10):3038–3043, 1984. doi:10.1109/TPAS.1984.318308.

S. Averianova, N. Akatnov, and E. Tonkonogov. Numerical modeling of the decaying arc. In VII Int. Conf. "Plasma Physics and Plasma Technology", Minsk (Belarus), pages 655–658, 17-21 Sept., 2012.

S. Averianova, N. Akatnov, and E. Tonkonogov. Numerical modelling of the interrupting arc in HV SF6-blast interrupters. In XV Symp. on Physics ofSwitching Arc, Brno (Czech Republic), volume 1, pages 3–6, 22-26 Sept., 2003.

K. Ragaller (editor). Current interruption in high voltage networks. Plenum Press, NewYork, 1978.

L. S. Frost and R. W. Liebermann. Composition and transport properties of SF6 and their use in a simplified enthalpy flow arc model. Proceedings of the IEEE, 59(4):474–485, 1971. doi:10.1109/PROC.1971.8206.

R. M. Beam and R. F. Warming. An implicit factored scheme for the compressible Navier-Stokes equations. AIAA Journal, 16:393–401, 1978. doi:10.2514/3.60901.

P. L. Roe. Approximate Riemann solvers, parameter vectors and difference scheme. J. Comput. Phys., 43:357–372, 1981. doi:10.1016/0021-9991(81)90128-5.

C. Hirsch. Numerical Computation of Internal and External flows, v.2. Wiley, 1990.

A. Kornhaas, F. Reichert, C. Leu, and F. Berger. Simulation of interaction between switching arc and switching mechanics in SF6 self-blast circuit breakers. In XVIII Symp. on Physics of Switching Arc, Brno (Czech Republic), pages 276–279, 7-11 Sept., 2009.

J. Zhong, Z. Li, and Y. Guo. Pressure and arc voltage measurements in a 252 kV SF6 puffer circuit breaker. In XXth Symp. on Physics of Switching Arc, Brno (Czech Republic), volume Contributed Papers, pages 332–335, 2-6 Sept., 2013.

Downloads

Published

2019-09-10

Issue

Section

Articles