State of Art and Challenges for the Calculation of Radiative and Transport Properties of Thermal Plasmas in HVCB

Authors

  • Y. Cressault LAPLACE laboratory Toulouse University France
  • Ph. Teulet LAPLACE laboratory Toulouse University France
  • X. Baumann LAPLACE laboratory Toulouse University France
  • G. Vanhulle LAPLACE laboratory Toulouse University France
  • F. Reichert SIEMENS AG, Nonnendammallee 104, Berlin, 13629
  • A. Petchanka SIEMENS AG, Nonnendammallee 104, Berlin, 13629
  • N. Kabbaj LAPLACE laboratory Toulouse University France

DOI:

https://doi.org/10.14311/ppt.2019.2.208

Keywords:

HVCB, chemical composition, transport coefficients, radiative properties, NLTE

Abstract

This paper is focused on the state-of-the-art and challenges concerning the thermophysical properties of thermal plasmas used in numerical modelling devoted to high voltage circuit breakers.
For Local Thermodynamic Equilibrium (LTE) and Non-Local Thermodynamic (NLTE) and/or Chemical Equilibrium (NLCE) plasmas, the methods used to calculate the composition, thermodynamic, transport and radiative properties are presented.
A review of these last data is proposed and some comparisons are given for illustrations.

References

Y. Cressault. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling. AIP Advances, 5(5):057112, 2015. doi:10.1063/1.4920939.

Y. Cressault, V. Connord, H. Hingana, P. Teulet, and A. Gleizes. Transport properties of CF3I thermal plasmas mixed with CO2, air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers. Journal of Physics D: Applied Physics, 44(49):495202, 2011. doi:10.1088/0022-3727/44/49/495202.

L. Zhong, Y. Cressault, and P. Teulet. Thermophysical and radiation properties of

high-temperature C4F8-CO2 mixtures to replace SF6 in high-voltage circuit breakers. Physics of Plasmas, 25(3):033502, 2018. doi:10.1063/1.5012850.

P. André and Z. Koalaga. Composition of a thermal plasma formed from ptfe with copper in non-oxidant atmosphere, Part I: Definition of a test case with the SF6. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 14(3), 2010. doi:10.1615/HighTempMatProc.v14.i3.70.

A. Yang, Y. Liu, B. Sun, X. Wang, Y. Cressault, L. Zhong, M. Rong, Y. Wu, and C. Niu. Thermodynamic properties and transport coefficients of high-temperature CO2 thermal plasmas mixed with C2F4. Journal of Physics D: Applied Physics, 48(49):495202, 2015. doi:10.1088/0022-3727/48/49/495202.

L. Zhong, X. Wang, M. Rong, and Y. Cressault. Effects of copper vapour on thermophysical properties of CO2-N2 plasma. The European Physical Journal D, 70(11):233, 2016. doi:10.1140/epjd/e2016-70241-3.

M. Rong, L. Zhong, Y. Cressault, A. Gleizes, X. Wang, F. Chen, and H. Zheng. Thermophysical properties of SF6–Cu mixtures at temperatures of 300–30 000 K and pressures of 0.01–1.0 MPa: part 1. Equilibrium compositions and thermodynamic properties considering condensed phases. Journal of Physics D: Applied Physics, 47(49):495202, 2014. doi:10.1088/0022-3727/47/49/495202.

X. Wang, L. Zhong, Y. Cressault, A. Gleizes, and M. Rong. Thermophysical properties of SF6-Cu mixtures at temperatures of 300–30,000 k and pressures of 0.01–1.0 MPa: part 2. Collision integrals and transport coefficients. Journal of Physics D: Applied Physics, 47(49):495201, 2014. doi:10.1088/0022-3727/47/49/495201.

B. Chervy, A. Gleizes, and M. Razafinimanana. Thermodynamic properties and transport coefficients in SF6-Cu mixtures at temperatures of 300–30000 K and pressures of 0.1–1 MPa. Journal of Physics D: Applied Physics, 27(6):1193, 1994. doi:10.1088/0022-3727/27/6/017.

L. Zhong, M. Rong, X. Wang, J. Wu, G. Han, G. Han, Y. Lu, A. Yang, and Y. Wu. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential. AIP Advances, 7(7):075003, 2017. doi:10.1063/1.4993305.

D. Godin and J. Trépanier. A robust and efficient method for the computation of equilibrium composition in gaseous mixtures. Plasma chemistry and plasma processing, 24(3), 2004. doi:10.1007/s11090-004-2279-8.

J. Hirschfelder, C. Curtis, and R. Bird. Molecular Theory of Gases and Liquids. Second printing. New York: Wiley, 1964.

M. Boulos. Thermal plasmas: fundamental and applications vol 1. First printing. Springer-Verlag New York, 1994.

J. Lowke. Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. Journal of Quantitative Spectroscopy and Radiative Transfer, 14(2), 1974. doi:10.1016/0022-4073(74)90004-1.

R. Liebermann and J. Lowke. Radiation emission coefficients for sulfur hexafluoride arc plasma. JQSRT, 16(253), 1976. doi:10.1016/0022-4073(76)90067-4.

V. Aubrecht and M. Bartlova. Net emission coefficients of radiation in air and SF6 thermal plasmas. Plasma Chemistry and Plasma Processing, 29(2):131, 2009. doi:10.1007/s11090-008-9163-x.

A. Gleizes, B. Rahmani, J. Gonzalez, and B. Liani. Calculation of net emission coefficient in N2, SF6 and SF6-N2 arc plasmas. Journal of Physics D: Applied Physics, 24(8):1300, 1991. doi:10.1088/0022-3727/24/8/011.

R. Siegel and J. Howell. Thermal radiation heat transfer. Third printing. Taylor and Francis, New York and London, 1992.

M. Modest. Radiative Heat Transfer. Second printing. Academic Press California, London, Massachusetts, 2003.

G. Raynal and A. Gleizes. Radiative transfer calculation in SF6 arc plasmas using partial characteristics. Plasma Sources and Technology, 4(1):152, 1995. doi:10.1088/0963-0252/4/1/017.

V. Aubrecht and J. Lowke. Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics. Journal of Physics D: Applied Physics, 27(10):2066, 1994. doi:10.1088/0022-3727/27/10/013.

N. Bogatyreva, M. Bartlova, and V. Aubrecht. Mean absorption coefficients of air plasmas. Journal of Physics: Conference Series, 275(1), 2011. doi:10.1088/1742-6596/275/1/012009.

A. Gleizes, H. Randrianandraina, and Y. Cressault. Improvements of radiative transfer calculation for SF6 thermal plasmas. In XIXth Symposium on Physics of Switching arc, page 27, Brno, Czech Republic, 5-9 September 2011.

T. Billoux, Y. Cressault, V. F. Boretskij, A. N. Veklich, and A. Gleizes. Net emission coefficient of CO2-Cu thermal plasmas: role of copper and molecules. J. Phys.: Conf. Ser., 406:012027, 2012. doi:10.1088/1742-6596/406/1/012027.

H. Z. Randrianandraina, Y. Cressault, and A. Gleizes. Improvements of radiative transfer calculation for SF6 thermal plasmas. J. Phys. D: Appl. Phys., 44(19):194012, 2011. doi:10.1088/0022-3727/44/19/194012.

C. Jan, Y. Cressault, A. Gleizes, and K. Bousoltane. Calculation of radiative properties of SF6-C2F4 thermal plasmas - application to radiative transfer in high-voltage circuit breakers modelling. J. Phys. D: Appl. Phys., 47(1):015204, 2013. doi:10.1088/0022-3727/47/1/015204.

H. Nordborg and A. A. Lordanidis. Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations. Journal of Physics D: Applied Physics, 41(13), 2008. doi:10.1088/0022-3727/41/13/135205.

L. Hermette, Y. Cressault, A. Gleizes, C. Jan, and K. Bousoltane. Radiative properties of SF6-C2F4-Cu mixtures in high voltage circuit breakers arc plasmas: net emission coefficient and mixing rules. In XXth International Conference on Gas Discharge and their Applications, page 229, Orléans, France, 6-11 July 2014.

J. L. Zhang, A. B. Murphy, W. Hall, and M. T. C. Fang. Computational investigation of arc behavior in an auto-expansion circuit breaker contaminated by ablated nozzle vapor. IEEE Transactions on Plasma Science, 30(2):706–719, 2002. doi:10.1109/TPS.2002.1024273.

Q. Ma, M. Rong, A. B. Murphy, Y. Wu, and T. Xu. Simulation Study of the Influence of Wall Ablation on Arc Behavior in a Low-Voltage Circuit Breaker. IEEE Trans. Plasma Sci., 37(1):261–269, 2009. doi:10.1109/TPS.2008.2007733.

J. Yan. Inclusion of nozzle dimensional change due to PTFE ablation in switching arc simulation. In XXIIth International Conference on Gas Discharge and their Applications, Novi-Sad, Serbia, 2-7 September 2018.

P. Robin-Jouan. Ablation modelling in high voltage circuit-breakers: impact on the arc extinction. In XXth International Conference on Gas Discharge and their Applications, Orléans, France, 6-11 July 2014.

S. Arabi, J. Trepanier, R. Camarero, and A. Vassilev. Modeling nozzle geometry changes due to the ablation in high-voltage circuit breakers. In XXth International Conference on Gas Discharge and their Applications, page 479, Orléans, France, 6-11 July 2014.

A. Petchanka, F. Reichert, J. Gonzalez, and P. Freton. Improved modeling of ablation process in high voltage circuit breakers for switching ar simulation. In XXth International Conference on Gas Discharge and their Applications, page 155, Orléans, France, 6-11 July 2014.

P. Kloc, V. Aubrecht, M. Bartlova, O. Coufal, and C. Rümpler. On the Selection of Integration Intervals for the Calculation of Mean Absorption Coefficients. Plasma Chem Plasma Process, 35(6):1097–1110, 2015. doi:10.1007/s11090-015-9648-3.

P. Kloc, V. Aubrecht, and M. Bartlova. Numerically optimized band boundaries of Planck mean absorption coefficients in air plasma. J. Phys. D: Appl. Phys., 50(30):305201, 2017. doi:10.1088/1361-6463/aa7627.

P. Kloc, V. Aubrecht, and M. Bartlova. Objective function for numerical mean absorption bands optimization. Plasma Physics and Technology, 4(3):269, 2017. doi:10.14311/ppt.2017.3.269.

N. Kabbaj, Y. Cressault, P. Teulet, and F. Reichert. Numerical optimization of mean absorption coefficient in air using Planck modified mean function. In XVth Hig-Tech Plasma Processes Conference, Toulouse, France, 2-6 July 2018.

J. P. Trelles. Advances and challenges in computational fluid dynamics of atmospheric pressure plasmas. Plasma Sources Sci. Technol., 27(9):093001, September 2018. doi:10.1088/1361-6595/aac9fa.

A. Gleizes, F. Mbolidi, and A. A. M. Habib. Kinetic model of a decaying SF6 plasma over the temperature range 12000 K to 3000 K. Plasma Sources Sci. Technol., 2(3):173–179, 1993. doi:10.1088/0963-0252/2/3/007.

X. Baumann, Y. Cressault, P. Teulet, F. Reichert, and A. Petchanka. First approach in the calculation of the radiative properties of multi-temperature SF6 plasmas at 1 bar. In XXIIIrd International Symposium on Plasma Chemistry, Montréal, Canada, July 2017.

X. Baumann. Etude de la composition chimique et des propriétés thermodynamiques et radiatives d’un plasma de SF6-C2F4 en condition de déséquilibre thermique. PhD thesis, Université Paul Sabatier, France, 2019.

V. Colombo, E. Ghedini, and P. Sanibondi. Thermodynamic and transport properties in

non-equilibrium argon, oxygen and nitrogen thermal plasmas. Progress in Nuclear Energy, 50(8):921–933, 2008. doi:10.1016/j.pnucene.2008.06.002.

V. Colombo, E. Ghedini, and P. Sanibondi. Two-temperature thermodynamic and transport properties of argon-hydrogen and nitrogen-hydrogen plasmas. J. Phys. D: Appl. Phys., 42(5):055213, 2009. doi:10.1088/0022-3727/42/5/055213.

S. Ghorui, J. V. R. Heberlein, and E. Pfender. Thermodynamic and Transport Properties of Two-temperature Oxygen Plasmas. Plasma Chem Plasma Process, 27(3):267, 2007. doi:10.1007/s11090-007-9053-7.

S. Ghorui, J. V. R. Heberlein, and E. Pfender. Thermodynamic and Transport Properties of Two-Temperature Nitrogen-Oxygen Plasma. Plasma Chem Plasma Process, 28(4):553–582, 2008. doi:10.1007/s11090-008-9141-3.

X.-N. Zhang, H.-P. Li, A. B. Murphy, and W.-D. Xia. A numerical model of non-equilibrium thermal plasmas. I. Transport properties. Physics of Plasmas, 20(3):033508, 2013. doi:10.1063/1.4794969.

C. Bonnefois. Contribution à l’étude des méthodes de résolution de l’équation de Boltzmann dans un plasma à deux températures : exemple le mélange argon-hydrogène. PhD thesis, Limoges University, France, 1983.

C. Bonnefoi, J. Aubreton, and J. M. Mexmain. New approach, taking into account elastic and inelastic processes for transport properties of a two temperature plasma. Zeitschrift für Naturforschung, 40:885, 1985. doi:10.1515/zna-1985-0904.

J. Mexmain. Coefficients de transport dans un plasma à deux températures: application au mélange argon-oxygène. PhD thesis, 1983.

F. McCourt. Nonequilibrium Phenomena in Polyatomic Gases: Dilute Gases. Vol. 1. Oxford University Press, USA, 1990.

J. Aubreton, C. Bonnefoi, and J. M. Mexmain. Calcul de propriétés thermodynamiques et des coefficients de transport dans un plasma Ar-O2 en non-équilibre thermodynamique et à la pression atmosphérique. Rev. Phys. Appl. (Paris), 21(6):365–376, 1986. doi:10.1051/rphysap:01986002106036500.

J. Aubreton, M. F. Elchinger, and P. Fauchais. New Method to Calculate hermodynamic and Transport Properties of a Multi-Temperature Plasma: Application to N2 Plasma. Plasma Chemistry and Plasma Processing, 18(1):1–27, 1998. doi:10.1023/A:1021785125690.

J. Aubreton, M. F. Elchinger, P. Fauchais, V. Rat, and P. André. Thermodynamic and transport properties of a ternary Ar-H2-He mixture out of equilibrium up to 30 000 K at atmospheric pressure. J. Phys. D: Appl. Phys., 37(16):2232–2246, 2004. doi:10.1088/0022-3727/37/16/004.

M. Capitelli, I. Armenise, D. Bruno, M. Cacciatore, R. Celiberto, G. Colonna, O. D. Pascale, P. Diomede, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta, S. Longo, D. Pagano, D. Pietanza, and M. Rutigliano. Non-equilibrium plasma kinetics: a state-to-state

approach. Plasma Sources Sci. Technol., 16(1):S30–S44, 2007. doi:10.1088/0963-0252/16/1/S03.

M. Capitelli, I. Armenise, E. Bisceglie, D. Bruno, R. Celiberto, G. Colonna, G. D’Ammando, O. De Pascale, F. Esposito, C. Gorse, V. Laporta, and A. Laricchiuta. Thermodynamics, Transport and Kinetics of Equilibrium and Non-Equilibrium Plasmas: A State-to-State Approach. Plasma Chem Plasma Process, 32(3):427–450, 2012. doi:10.1007/s11090-011-9339-7.

X. Guo, A. B. Murphy, and X. Li. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas. J. Phys. D: Appl. Phys., 50(12):125202, 2017. doi:10.1088/1361-6463/aa5d25.

X. N. Zhang, H. P. Li, A. B. Murphy, and W. D. Xia. Comparison of the transport properties of two-temperature argon plasmas calculated using different methods. Plasma Sources Sci. Technol., 24(3):035011, 2015. doi:10.1088/0963-0252/24/3/035011.

F. Yang, Z. Chen, Y. Wu, and al. Two-temperature transport coefficients of SF6-N2 plasma. Phys. Plasmas, 22(10), 2015. doi:10.1063/1.4932073.

G. Vanhulle, Y. Cressault, P. Teulet, F. Reichert, and A. Petchanka. Transport properties of multi-temperature SF6 plasmas: influence of assumptions done in the plasma composition calculation. In XXIIIrd International Symposium on Plasma Chemistry, Montréal, Canada, 2017.

L. Soucasse, P. Riviere, and A. Soufiani. Monte Carlo methods for radiative transfer in quasi-isothermal participating media. Journal of Quantitative Spectroscopy and Radiative Transfer, 128:34, 2014. doi:10.1016/j.jqsrt.2012.07.008.

M. Scoggins. Development of numerical methods and study of coupled flow, radiation, and ablation phenomena for atmospheric entry. PhD thesis, Univsersity Paris-Saclay, 2017.

Downloads

Published

2019-09-10

Issue

Section

Review Papers