Optical Investigations on Plasma Temperature Estimation in a Model Spark Gap for Surge Currents

Authors

  • T. Runge Technische Universität Braunschweig, Institute for High Voltage Technology and Electrical Power Systems, 38106 Braunschweig
  • St. Franke INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald
  • S. Gortschakow INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald
  • M. Kurrat Technische Universität Braunschweig, Institute for High Voltage Technology and Electrical Power Systems, 38106 Braunschweig

DOI:

https://doi.org/10.14311/ppt.2017.2.108

Keywords:

arc, temperature, plasma, spark gap, surge current, surge protective device

Abstract

In this experimental investigation optical emission spectroscopy is used to characterize the radiation of the plasma in a spark gap during surge. Different approaches are used, compared and discussed in order to estimate plasma temperatures. The measurements were carried out in a narrow gap arrangement based on spark gap technology. This model is tested using 8/20 µs surge currents according to the IEC 62475 with amplitudes of 5 kA and 11 kA.

References

B. Schottel and et al. Investigations on the influence of surge current on plasma in a model spark gap. In Proc. International Conference on Lightning protection, Shanghai, China, 2014.

S. Ait-Amar. Arc extinguishing method of spd type1. In Proc. International Conference on Lightning protection, Uppsala, Sweden, 2008.

T. Runge and et al. Experimental investigation on plasma pressure in an narrow gap for short time currents. In Proc. International Conference on Electrica Contacts, Edinburgh, Great Britain, 2016.

T. Runge, T. H. Kopp, and M. Kurrat. Experimental investigations on electrical plasma conductivity in a model spark gap for surge currents. submitted to Plasma Physics and Technology, 2017.

T. Runge and et al. Measurement of plasma pressure in a narrow gap for different surge currents. In Proc. International Conference on Gas Discharges and their Applications, Nagoya, Japan, 2016.

A. D’Angola, G. Colonna, C. Gorse, and M. Capitelli. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur. Phys. J. D, 46(1):129–150, 2008. doi:10.1140/epjd/e2007-00305-4.

Q. Ma, M. Z. Rong, A. B. Murphy, Y. Wu, and T. J. Xu. Simulation Study of the Influence of Wall Ablation on Arc Behavior in a Low-Voltage Circuit Breaker. IEEE Trans. Plasma Sci., 37(1):261–269, 2009. doi:10.1109/TPS.2008.2007733.

P. André, L. Brunet, W. Bussiere, J. Caillard, J. M. Lombard, and J. P. Picard. Transport coefficients of plasmas consisting of insulator vapours - Application to PE, POM, PMMA PA66 and PC. Eur. Phys. J.-Appl. Phys., 25(3):169–182, 2004. doi:10.1051/epjap:2004007.

R. L. Kurucz and B. Bell. Atomic Line Data. Kurucz CD-ROM No. 23. [online], Smithsonian Astrophyical Observatory, 1995. URL: http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html.

Downloads

Published

2017-02-11

Issue

Section

Articles