Advanced Approach for Radiation Transport Description in 3D Collisional-radiative Models

Authors

  • D. Kalanov Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg
  • Yu. B. Golubovskii Saint Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg
  • D. Uhrlandt Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald
  • S. Gortschakow Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald

DOI:

https://doi.org/10.14311/ppt.2017.2.112

Keywords:

radiation transport, resonance radiation, plasma modelling, arcs

Abstract

The description of radiation transport phenomena in the frames of collisional-radiative models requires the solution of Holstein-Biberman equation. An advanced solutuion method for 3D plasma obejcts is proposed. The method is applicable for various line contours in a wide range of absorption coefficients. Developed approach is based on discretization of the arbitrary plasma volume on a Cartesian voxel grid. Transport of photons between the cells is computed using the ray traversal algorithm by Amanatides [1]. Solution of the particle balance equations with computed in advance radiative transfer matrix is demonstrated for various typical arc shapes, like e.g. free-burning arc and cylindric arc. Results are compared with corresponding calculations using previously developed approaches. As the method is suited for finite geometries and allows for a strict solution of the radiation transport equation, applicability ranges of previous approximations can be specified.

References

J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray Tracing. Eurographics, 87(3):3–10, 1987. doi:10.1.1.42.3443.

T. Holstein. Imprisonment of resonance radiation in gases. Physical Review, 72(12):1212–1233, 1947. doi:10.1103/PhysRev.72.1212.

Yu.B. Golubovskii, S. Gorchakov, and D. Uhrlandt. Transport mechanisms of metastable and resonance atoms in a gas discharge plasma. Plasma Sources Science and Technology, 22(2):32pp, 2013. doi:10.1088/0963-0252/22/2/023001.

A.F. Molisch and B.P. Oehry. Radiation trapping in atomic vapours. Oxford University Press, 1998.

Yu.B. Golubovskii and V.A. Maiorov. The influence of resonance radiation transport on the contraction of a glow discharge in argon. Plasma Sources Science and Technology, 24(2):25027, 2015. doi:10.1088/0963-0252/24/2/025027.

Yu.B. Golubovskii, D. Kalanov, S. Gortschakow, M. Baeva, and D. Uhrlandt. Excited atoms in the free-burning Ar arc: treatment of the resonance radiation. Journal of Physics D: Applied Physics, 49(47):475202, 2016. doi:10.1088/0022-3727/49/47/475202.

J.E. Lawler, G.J. Parker, and W.N.G. Hitchon. Radiation trapping simulations using the propagator function method. Journal of Quantitative Spectroscopy and Radiative Transfer, 49(6):627–638, 1993. doi:10.1016/0022-4073(93)90006-4.

D. Morris and K. Salisbury. Automatic preparation, calibration, and simulation of deformable objects. Computer methods in biomechanics and biomedical engineering, 11(3):263–279, 2008. doi:10.1080/10255840701769606.

Yu.B. Golubovskii, A. Timofeev, S. Gorchakov, D. Loffhagen, and D. Uhrlandt. Population of resonance and metastable atoms in a cylindrical volume of finite size. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(3):25–27, 2009. doi:10.1103/PhysRevE.79.036409.

Downloads

Published

2017-02-11

Issue

Section

Articles