Nonequlibrium Plasma Chemistry for Concept of Sustainable Development

Authors

  • V. Chernyak Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • O. Nedybaliuk Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • O. Tsymbaliuk Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • I. Fedirchyk Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • K. Chunikhina Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • E. Martysh Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • V. Iukhymenko Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • Iu. Veremii Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • I. Prysiazhnevych Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • O. Prysiazhna Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv
  • V. Prysiazhnyi Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, 01601, Kyiv

DOI:

https://doi.org/10.14311/ppt.2017.2.141

Keywords:

sustainable development, non-equilibrium plasma chemistry, rotating gliding discharge, conversion

Abstract

This work is devoted to the exploration of the compatibility of the hybrid plasma-catalytic conversion of liquid hydrocarbons into syngas with the concept of sustainable development. The results of experimental investigations indicate the high efficiency of plasma-catalytic conversion of ethanol to syngas and the small amount of waste (a few percent of feedstock weight). The results of the simulation of the kinetics using ZDPlasKin code for thermochemical and hybrid plasma-catalytic conversion.

References

SDGs: Sustainable Development Knowledge Platform. https://sustainabledevelopment.un.org/sdgs.

R. A. Sheldon. Green chemistry, catalysis and valorization of waste biomass. J Mol Catal A Chem, 422:3–12, 2016. doi:10.1016/j.molcata.2016.01.013.

S. I. Veettil, L. Kumar, and A. A. Koukoulas. Can Microbially Derived Advanced Biofuels Ever Compete with Conventional Bioethanol? A Critical Review. BioResources, 11(4):10711–10755, 2016. doi:10.15376/biores.11.4.Veettil.

R. A. Sheldon et al. Green Chemistry and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, 2007.

V. Ya. Chernyak et al. The Problem of Chemically Active Plasma Nonequilibrium. Review. Plasma Phys Technol, 2(3):226–232, 2015.

O. A. Nedybaliuk et al. Plasma-catalytic reforming of liquid hydrocarbons. Probl At Sci Technol, 95(1):235–238, 2015.

V. Ya. Chernyak et al. Plasma-liquid system with rotational gliding arc with liquid electrode. In 20th Symp Phys Switch Arc 2013, FSO 2013, 2-6 September, 2013, pages 112–115, Nove Mesto na Morave, Czech Republic, 2013.

V. Ya. Chernyak et al. The Rotating Gliding Discharge in Quartz Tube and Open Half-Spce at Atmospheric Pressure. Plasma Phys Technol, 2(2):116–119, 2015.

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis (NREL/BK-6A1-46676). Technical report, Golden, Colorado, USA, 2009. http://www.osti.gov/servlets/purl/1218930/.

C. Ducharme. Technical and economic analysis of Plasma-assisted Waste-to-Energy processes. PhD thesis, Columbia University, 2010.

J. Mizeraczyk and M. Jasiński. Plasma processing methods for hydrogen production. Eur Phys J Appl Phys, 75(2):24702, 2016. doi:10.1051/epjap/2016150561.

G. Petitpas et al. Ethanol and E85 Reforming Assisted by a Non-thermal Arc Discharge. Energy & Fuels, 24(4):2607–2613, 2010. doi:10.1021/ef100022r.

K. Hadidi, L. Bromberg, D. R. Cohn, et al. Hydrogen-Rich Gas Production from Plasmatron Reforming of Biofuels. In World Renew Energy Congr VIII Expo, Denver, CO, USA, 2004.

L. Bardos, H. Baránková, and A. Bardos. Production of Hydrogen-Rich Synthesis Gas by Pulsed Atmospheric Plasma Submerged in Mixture of Water with Ethanol. Plasma Chem Plasma Process, 37(1):115–123, 2017. doi:10.1007/s11090-016-9766-6.

S. Pancheshnyi, B. Eismann, G. J. M. Hagelaar, and L. C. Pitchford. Computer code ZDPlasKin, 2008. http://www.zdplaskin.laplace.univ-tise.fr.

M. Capitelli et al. Plasma Kinetics in Atmospheric Gases. Springer Series on Atomic, Optical, and Plasma Physics. Springer Berlin Heidelberg, 2000.

A. Flitti and S. Pancheshnyi. Gas heating in fast pulsed discharges in N2-O2 mixtures. Eur Phys J Appl Phys, 45(2):21001, 2009. doi:10.1051/epjap/2009011.

L. Morgan. Plasma Chemistry Modeling - KINEMA Research and Software LLC. http://kinema.com/plasma-chemistry-modeling/.

A. N. Tsymbalyuk et al. Influence of the gas mixture temperature on the efficiency of synthesis gas production from ethanol in a nonequilibrium plasma. Tech Phys, 58(8):1138–1143, 2013. doi:10.1134/S1063784213080252.

Downloads

Published

2017-02-11

Issue

Section

Articles