Influence of Electron Sources on the Near-field Plume in a Multistage Plasma Thruster

Authors

  • J. Duras Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald Department of Applied Mathematics, Physics and Humanities, Nürnberger Institute of Technology, D-90489 Nürnberg
  • R. Schneider Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald
  • O. Kalentev Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, D-37077 Göttingen
  • S. Kemnitz Computing Center, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald University Rostock, Institute of Informatics, D-18059 Rostock
  • K. Matyash Computing Center, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald
  • N. Koch Department of Applied Mathematics, Physics and Humanities, Nürnberger Institute of Technology, D-90489 Nürnberg
  • K. Lüskow Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald
  • D. Kahnfeld Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald
  • G. Bandelow Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, D-17498 Greifswald

DOI:

https://doi.org/10.14311/ppt.2016.3.126

Keywords:

multistage plasma thruster, near-field plume, external electron source, particle-in-cell

Abstract

n order to obtain a better understanding of the near-field plume of a multistage plasma thruster, the influence of an external electron source is investigated by Particle-In-Cell simulations. The variation of the source position showed a strong influence of the magnetic field configuration on the electron distribution and therefore on the plume plasma. In the second part of this work, higher energetic electrons were injected in order to model collision-induced diffusion in the plume. This broadens the electron distribution, which leads to a more pronounced divergence angle in the angular ion distribution.

References

G. Kornfeld, H. Seidel, and J. Wegener et al. Plasma Accelerator Arrangement, 1999. Priority: Germany No. 198 28 704.6, filed 26 June 1998.

N. Koch, M. Schirra, and S. Weis et al. The HEMPT Concept - A Survey on Theoretical Considerations and Experimental Evidences . In Proceedings of the 32nd International Electric Propulsion Conference, number IEPC-2011-236, 2011.

N. Koch, H.P. Harmann, and G. Kornfeld. Development and Testing Status of the THALES High Efficiency Multistage Plasma (HEMP) Thruster Family. In Proceedings of the 29nd International Electric Propulsion Conference, number IEPC-2005-297, 2005.

O. Kalentev, K. Matyash, and J. Duras. Electrostatic Ion Thrusters - Towards Predictive Modeling. Contributions to Plasma Physics, 54:235–248, 2014.

Karl Felix Lüskow. Physics of Ion Thrusters’ Plumes. Master’s thesis, University of Greifswald, July 2013.

K. Matyash, R. Schneider, and A. Mutzke et al. Kinetic Simulations of SPT and HEMP Thrusters Including the Near-Field Plume Region. IEEE Transactions on Plasma Since, 38(9, Part 1):2274–2280, 2010.

R. Procassini, C. Birdsall, E. Morese, and Cohen B. A relativistic monte carlo binary collision model for use in plasma particle simulation codes. Memorandum No. UCB/ERL M87/24, University of California, Berkeley, 1987.

K. Matyash, O. Kalentev, and R. Schneider et al. Kinetic Simulation of the stationary HEMP thruster including the near-filed plume region. In Proceedings of the 31st International Electric Propulsion Conference, number IEPC-2009-110, September 2009.

F. Taccogna, S. Longo, M. Capitelli, and R. Schneider. Self-similarity in Hall plasma discharges: Applications to particle models. Phys. Plasmas, 12:053502, 2005.

Downloads

Published

2016-02-14

Issue

Section

Articles