Study of Argon Afterglow with the Air Addition

Authors

  • V. Mazánková Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno
  • D. Trunec Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno
  • K. Petrová Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno
  • F. Krčma Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno

DOI:

https://doi.org/10.14311/ppt.2016.3.136

Keywords:

argon afterglow, optical emission spectroscopy, kinetic model

Abstract

The reaction kinetics in argon flowing afterglow (post-discharge) with the air addition was studied by optical emission spectroscopy. The optical emission spectra were measured along the~post-discharge flow tube. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows to calculate the time dependencies of particle concentrations.

References

S. Saloum, M. Naddaf, and B. Alkhaled. Diagnostics of N2-Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface. J. Phys. D: Appl. Phys., 41(4):045205, 2008.

M. Mafra, T. Belmonte, F. Poncin-Epaillard, A. Maliska, and U. Cvelbar. Treatment of hexatriacontane by Ar-O2 remote plasma: Formation of the active species. Plasma Process. Polym., 6(S):S198–S203, 2009.

S. Lerouge, M. R. Wertheimer, and L’H. Yahia. Plasma sterilization: a review of parameters, mechanisms, and limitations. Plasma Polym., 6(3):175–188, 2001.

J. F. Loiseau, P. Pignolet, and B. Held. Numerical simulation of Ar-N2 excitation transfer in flowing afterglow. J. Phys. D: Appl. Phys., 25(5):745–750, 1992.

M. N. Shneider, A. Baltuška, and A. M. Zheltikov. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization. J. Appl. Phys., 110(8):083112, 2011.

K. Kutasi, P. Sá, and V. Guerra. O2 dissociation in Ar-O2 surface-wave microwave discharges. J. Phys. D: Appl. Phys., 45(19):195205, 2012.

K. Kutasi, R. Zaplotnik, G. Primc, and M. Mozetic. Controlling the oxygen species density distributions in the flowing afterglow of O2/Ar-O2 surface-wave microwave discharges. J. Phys. D: Appl. Phys., 47(2):025203, 2014.

V. Mazánková, D. Trunec, and F. Krčma. Study of argon flowing afterglow with nitrogen injection. J. Chem. Phys., 139(3):164311, 2013.

V. Mazánková, D. Trunec, and F. Krčma. Study of nitrogen flowing afterglow with mercury vapor injection. J. Chem. Phys., 141(3):154307, 2014.

M. Schulze, A. Yanguas-Gil, A. von Keudell, and Awakowicz P. A robust method to measure metastable and resonant state densities from emission spectra in argon and argon-diluted low pressure plasmas. J. Phys. D: Appl. Phys., 41(3):065206, 2008.

D. Trunec, P. Spanel, and D. Smith. The influence of electron-electron collisions on electron thermalization in He and Ar afterglow plasmas. Chem. Phys. Lett., 372:728–732, 2003.

C. D. Pintassilgo, J. Loureiro, G. Cernogora, and M. Touzeau. Methane decomposition and active nitrogen in a N2-CH4 glow discharge at low pressures. Plasma Sources Sci. Technol., 8:463–478, 1999.

Downloads

Published

2016-02-14

Issue

Section

Articles