Stochiometry Air − CH4 Mixture: Composition, Thermodynamic Propertiess and Transport Coefficients

Authors

  • A. Harry Solo Laplace, UMR 5213 CNRS-UPS-INP, Université Paul Sabatier 118 route de Narbonne, bat3R2, 31062 Toulouse Cedex
  • M. Benmouffok Laplace, UMR 5213 CNRS-UPS-INP, Université Paul Sabatier 118 route de Narbonne, bat3R2, 31062 Toulouse Cedex
  • P. Freton Laplace, UMR 5213 CNRS-UPS-INP, Université Paul Sabatier 118 route de Narbonne, bat3R2, 31062 Toulouse Cedex
  • J.-J. Gonzalez Laplace, UMR 5213 CNRS-UPS-INP, Université Paul Sabatier 118 route de Narbonne, bat3R2, 31062 Toulouse Cedex

DOI:

https://doi.org/10.14311/ppt.2020.1.21

Keywords:

air-CH4, plasma composition, constant pressure, constant mass density, thermodynamic properties, transport coefficients

Abstract

This work is related to the determination of the local thermodynamic equilibrium (LTE) data of 90.5% air and 9.5% CH4 mixture. The results of chemical composition, thermodynamic properties and transport coefficients are presented for temperatures (300 K to 30 kK) and pressure (1 and 10 bars) or mass density (0.1481 and 1.111 kg.m−3). The chemical composition is determined using the mass action law. Input data come from the NIST and JANAF sites. For pressure equation, Debye-Huckel’s first order and virial’s second order corrections are used in the equation system to take into account the different particle interactions. For the considered mixture (90.5% air and 9.5% CH4) the properties are compared to those of pure air.

References

R. Maly and M. Vogel. Initiation and propagation of flame fronts in lean methane/air mixtures by the three modes of the ignition spark. Int. Symp. on combustion, 17(1), 1979. doi:10.1016/S0082-0784(79)80079-X.

V. Kravchik and E. Sher. Numerical modeling of spark ignition and flame initiation in a quiescent methane-air mixture. J. Combustion and Flame, 99, 1994. doi:10.1016/0010-2180(94)90057-4.

C. Zaepffel, D. Hong, and J.-M. Bauchire. Experimental study of an electrical discharge used in reactive media ignition. J. Phys. D: Appl. Pjys., 40, 2007. doi:10.1088/0022-3727/40/4/020.

C. Zaepffel. Etude expérimentale et numérique d’une décharge électrique appliquée à l’allumage d’un milieu réactif. PhD thesis, Thèse de doctorat en Physique des gaz et des plasmas, Université d’Orléans, 2008.

Y. Kramida, A.and Ralchenko and J. Reader. NIST atomic spectra database (ver. 5.6.1). URL: https://physics.nist.gov/asd.

M. W. Chase, C. A. Davies, D. J. Downey, J. R.and Fruripn, R. A. McDonald, and A. N. Syverud. NIST–JANAF thermochemical tables (ver. 1.0). doi:10.18434/T42S31.

K. S. Drellishak, D. P. Aeschliman, and A. B. Cambel. Partition functions and thermodynamic properties of nitrogen and oxygen plasmas. Phys. Fluids, 8(1590), 1965. doi:10.1063/1.1761469.

M. Capitelli and E. Molinari. Problems of determination of high temperature thermodynamic properties of rare gases with application to mixtures. Journal of Plasma Physics, 4(335-550), 1970. doi:10.1017/S0022377800005043.

G. Colonna, A. D’Angola, and M. Capitelli. Electronic excitation and isentropic coefficients of high temperature planetary atmosphere plasmas. Physics of Plasmas, 19(7), 2012. doi:10.1063/1.4737190.

M. Capitelli, G. Colonna, and A. D’Angola. Fundamental Aspects of Plasma Chemical Physics: Thermodynamics. Springer Series on Atomic, Optical, and Plasma Physics, 2013. ISBN 978-1-4419-8182-0.

A. Harry Solo, P. Freton, and J.-J. Gonzalez. The virial effect – application for SF6 and CH4 thermal plasmas. J. Appl. Sci., 9(5), 2019. doi:10.3390/app9050929.

D. Godin. Calcul de compositions chimiques de plasmas à l’équilibre thermodynamique: application à la modélisation de l’ablation dans les disjoncteurs. Master’s thesis, Maitrise en ès sciences appliquées, Université de Montréal – Ecole Polytechnique, Montréal, 1998.

T. Billoux. Elaboration d’une base de données radiatives pour des plasmas de type CwHxOyNz et application au transfert radiatif pour des mélanges air, CO2 et CO-H2. PhD thesis, Thèse de doctorat en Ingénierie des Plasmas, Université de Toulouse III - Paul Sabatier, Toulouse, 2013.

D. Godin and J.-Y. Trepanier. A robust and efficient method for the computation of equilibrium composition in gaseous mixtures. Plasma Chemistry and Plasma Processing, 24(3), 2004. doi:10.1007/s11090-004-2279-8.

A. Harry Solo, P. Freton, and J.-J. Gonzalez. Compositions chimiques et propriétés thermodynamiques à l’etl d’un mélange air–CH4. JITIPEE, 5(2), 2019. doi:10.18145/jitipee.v5i2.221.

H. Kallmann. Thermodynamic properties of real gases for use in high pressure problems. Technical report, U.S. Air Force, Project Rand, RM 442, 1950. URL: https://www.rand.org/pubs/research_memoranda/RM442.html.

C. Wan, Y. Wu, Z. Chen, F. Yang, Y. Feng, M. Rong, and H. Zhang. Thermodynamic and transport properties of real air plasma in wide range of temperature and pressure. Plasma Science and Technology, 18(7), 2016. doi:10.1088/1009-0630/18/7/06.

M. Boulos, P. Fauchais, and E. Pfender. Thermal Plasmas: Fundamentals and Applications, volume 1. Springer Science & Business Media, 1994. ISBN 978-1-4899-1339-5.

P. André, L. Brunet, W. Bussière, J. Caillard, J.-M. Lombard, and J.-P. Picard. Transport coefficients of plasmas consisting of insulator vapours: Application to PE, POM, PMMA, PA66 and PC. Eur. Phys. J. Appl. Phys., 25, 2004. doi:10.1051/epjap:2004007.

Y. Cressault and A. Gleizes. Thermodynamic properties and transport coefficients in Ar–H2–Cu plasmas. J. Phys. D: Appl. Phys., 37, 2004. doi:10.1088/0022-3727/37/4/008.

E. Mason, R. Munn, and F. Smith. Transport coefficient of ionized gases. Phys. Fluids, 10(8), 1967. doi:10.1063/1.1762365.

J. Hirschfelder, C. Curtiss, and R. Bird. Molecular theory of gases and liquids. J. Wiley & sons, inc., New York and Chapman & Hal, limited, London, 1954. ISBN 978-0-471-40065-3.

M. Capitelli, C. Gorse, S. Longo, and D. Giordano. Collision integrals of high temperature air species. J. Thermophysics and Heat Transfer, 14(2), 2000. doi:10.2514/2.6517.

J.-M. Baronnet, A. Sanon, B. Sauvage, J. Lesinski, E. Meillot, and G. Debbagh-Nour. Transport coefficient of hydrogen-methane thermal plasma. In 8th International Symposium on Plasma Chemistry, Symposium Proceedings, page p125, 1987. URL: https://www.ispc-conference.org/ispcdocs/ispc8/DB2.html.

A. Sanon. Contribution au calcul des propriétés thermodynamiques et des coefficients de transport de plasmas thermiques de mélanges Ar–H. PhD thesis, Thèse de doctorat en physique, Université de Limoge, France, 1988.

A. Sanon. Transport coefficients of Ar–C–H–O–N systems thermal plasma at atmospheric pressure. IOP Conf. Ser.: Mater. Sci. Eng., 2012. doi:10.1088/1757-899X/29/1/012003.

A. D’Angola, G. Colonna, A. Bonomo, D. Bruno, A. Laricchiuta, and M. Capitelli. A phenomenological approach for the transport properties of air plasmas. The European Physical Journal D, 66, 2012. doi:10.1140/epjd/e2012-30147-8.

M. Capitelli, C. Gorse, S. Longo, and D. Giordano. Collision integrals of high-temperature air species. J. Thermophys. and Heat Transfer, 14(2), 2000. doi:10.2514/2.6517.

B. Sourd, J. Aubreton, M.-F. Elchinger, M. Labrot, and U. Michon. High temperature transport coefficients in e–C–H–N–O mixtures. J. Phys. D: Appl. Phys., 39, 2006. doi:10.1088/0022-3727/39/6/016.

M. Capitelli, G. Colonna, C. Gorse, and A. d’Angola. Transport properties of high temperature air in local thermodynamic equilibrium. Eur. Phys. J. D., 11, 2000. doi:10.1007/s100530070094.

A. D’Angola, G. Colonna, C. Gorse, and M. Capitelli. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur. Phys. J. D., 46, 2008. doi:10.1140/epjd/e2007-00305-4.

Downloads

Published

2020-07-03

Issue

Section

Articles