Electron Induced Emission of Nitrous Oxide in the UV-VIS Spectral Range

Authors

DOI:

https://doi.org/10.14311/ppt.2020.2.36

Keywords:

nitrous oxide, emission, spectrum, electron, excitation, fluorescence

Abstract

The electron impact excitation of N2O was studied using the crossed electron-molecular beams method. Optical emission spectrum initiated by 50 eV electron impact was recorded within the range 200-700 nm. Main emission bands arise from excited ion state N2O+(A2Σ) and dissociative excitation into N2+(B2Σ+u). The rotationally un-resolved excitation-emission cross sections for selected ion transitions were scaled to absolute values and their dependence on electron energy was determined. Several of them were determined for the first time.

References

R. G. Prinn, P. G. Simmonds, R. A. Rasmussen, R. D. 167 Rosen, F. N. Alyea, C. A. Cardelino, A. J. Crawford, D. M. Cunnold, P. J. Fraser, and J. E. Lovelock. The atmospheric lifetime experiment: 1. introduction, instrumentation, and overview. Journal of Geophysical Research: Oceans, 88(C13):8353–8367, 1983. doi:10.1029/JC088iC13p08353.

R. P. Wayne. Chemistry of Atmospheres. Third edition. Oxford University Press, USA, 2006.

L. M. Ziurys, A. J. Apponi, J. M. Hollis, and L. E. Snyder. Detection of interstellar N2O: A new molecule containing an N-O bond. Astrophysical Journal Letters,436:L181, 1994. doi:10.1086/187662.

M. Kitajima, Y. Sakamoto, R. J. Gulley, M. Hoshino, J. C. Gibson, H. Tanaka, and S. J. Buckman. Electron scattering from N2O: absolute elastic scattering and vibrational excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(9):1687–1702, 2000. doi:10.1088/0953-4075/33/9/301.

K. E. Fox and J. Reid. Dynamics of the N2O laser as measured with a tunable-diode laser. J. Opt. Soc. Am. B, 2(5):807–814, 1985. doi:10.1364/JOSAB.2.000807.

G. Allcock and J. McConkey. Dissociation patterns in N2O following electron impact. Chemical Physics, 34(2):169 – 179, 1978. doi:10.1016/0301-0104(78)80033-0.

S. Barnett, N. Mason, and W. Newell. Production of the N2(A3Σ+u) metastable state by electron impact dissociative excitation of N2O. Chemical Physics, 153(1):283 – 295, 1991. doi:10.1016/0301-0104(91)90024-N.

I. D. Latimer and J. W. McConkey. Absolute cross sections for simultaneous ionization and excitation of N2O by electron impact. Proceedings of the Physical Society, 86(4):745–751, 1965. doi:10.1088/0370-1328/86/4/309.

H. van Sprang, G. Mo¯hlmann, and F. J. de Heer. Emission of radiation due to ionization and dissociation of N2O by electron impact. Chemical Physics, 33(1):65 – 72, 1978. doi:10.1016/0301-0104(78)87071-2.

W. Sroka and R. Zietz. Dissociative excitation and ionization excitation in N2O with synchrotron radiation. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 28(5):794–796, 1973. doi:10.1515/zna-1973-0544.

C. P. Malone, P. V. Johnson, J. W. McConkey, J. M. Ajello, and I. Kanik. Dissociative excitation of N2O by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 41(9):095201, 2008. doi:10.1088/0953-4075/41/9/095201.

S. E. Michelin, T. Kroin, and M. T. Lee. Elastic and excitation cross sections for electron - nitrous oxide collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 29(18):4319–4319, 1996. doi:10.1088/0953-4075/29/18/026.

H. Kawahara, D. Suzuki, H. Kato, M. Hoshino, H. Tanaka, O. Ingólfsson, L. Campbell, and M. J.

Brunger. Cross sections for electron impact excitation of the C1Π and D1Σ+ electronic states in N2O. The Journal of Chemical Physics, 131(11):114307, 2009. doi:10.1063/1.3230150.

M. Danko, J. Orszagh, M. Durian, J. Kocišek, M. Daxner, S. Zöttl, J. B. Maljkovic, J. Fedor, P. Scheier, S. Denifl, and Š. Matejcík. Electron impact excitation of methane: determination of appearance energies for dissociation products. Journal of Physics B: Atomic, Molecular and Optical Physics, 46(4):045203, 2013. doi:10.1088/0953-4075/46/4/045203.

J. Országh, M. Danko, P. Cechvala, and Š. Matejcík. Dissociative excitation of acetylene induced by electron impact: Excitation-emission cross-sections. The Astrophysical Journal, 841(1):17, 2017. doi:10.3847/1538-4357/aa6e54.

D. Bodewits, J. Országh, J. Noonan, M. Durian, and Š. Matejcík. Diagnostics of collisions between electrons and water molecules in near-ultraviolet and visible wavelengths. The Astrophysical Journal, 885(2):167, 2019. doi:10.3847/1538-4357/ab43c9.

J. Matúška, D. Kubala, and Š. Matejcík. Numerical simulation of a trochoidal electron monochromator. Measurement Science and Technology, 20(1):015901, 2008. doi:10.1088/0957-0233/20/1/015901.

D. Cartwright, M. Brunger, L. Campbell, B. Mojarrabi, and P. Teubner. Nitric oxide excited under auroral conditions: Excited state densities and band emissions. Journal of Geophysical Research: Space Physics, 105(A9):20857–20867, 2000. doi:10.1029/1999JA000333.

J. H. Callomon, F. Creutzberg, and D. P. Craig. The electronic emission spectrum of ionized nitrous oxide, N2O+:A2Σ-X2Π. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 277(1266):157–189, 1974. doi:10.1098/rsta.1974.0048.

Downloads

Published

2020-12-18

Issue

Section

Articles