Arc extinction with nitrogen at 1-40 bar in a puffer-like contact configuration

Authors

  • N. Støa-Aanensen SINTEF Energy Research
  • C. Espedal SINTEF Energy Research
  • O. Rokseth SINTEF Energy Research
  • E. Jonsson SINTEF Energy Research
  • M. Runde SINTEF Energy Research

DOI:

https://doi.org/10.14311/ppt.2021.1.14

Keywords:

Current interruption, Subsea switchgear, Medium voltage, High-pressure nitrogen

Abstract

To develop cost-efficient subsea switchgear for large sea depths, the extinction of arcs under high filling pressures must be understood. In this work, arc-extinction experiments have been performed with a puffer-like contact configuration using nitrogen at different filling pressures as the current interruption medium. The main finding is that, for the given contact configuration, the current
interruption capability was lower at 20 and 40 barabs than at 1 and 10 barabs. While higher pressures result in higher cooling flow rates and longer flow times given the same puffer volume, compression spring and nozzle geometry; it does not necessarily improve the arc-extinction capability. This is probably because higher filling pressures increase the arc voltage and total energy dissipated in the arcing zone. Because the filling pressure greatly influences the flow characteristics, the puffer design should be optimized for each pressure level.

References

Hywind tampen - floating wind power project - equinor.com. [2021-04-12]. arXiv:https://www.equinor.com/en/what-we-do/hywind-tampen.html.

Hywind scotland - equinor.com. [2021-04-12]. arXiv:https://www.equinor.com/en/what-we-do/floating-wind/hywind-scotland.html.

F. Abid, K. Niayesh, E. Jonsson, N. S. Støa-Aanensen, and M. Runde. Arc voltage characteristics in ultrahigh-pressure nitrogen including supercritical region. IEEE Transactions on Plasma Science, 46(1):187–193, 2018. doi:10.1109/TPS.2017.2778800.

F. Abid, K. Niayesh, and N. S. Støa-Aanensen. Ultrahigh-pressure nitrogen arcs burning inside cylindrical tubes. IEEE Transactions on Plasma Science, 47(1):754–761, 2019. doi:10.1109/TPS.2018.2880841.

F. Abid, K. Niayesh, C. Espedal, and N. S. Støa-Aanensen. Current interruption performance of ultrahigh-pressure nitrogen arc. Journal of Physics D: Applied Physics, 53(18):185503, 2020. doi:10.1088/1361-6463/ab7352.

F. Abid, K. Niayesh, and N. S. Støa-Aanensen. Nozzle wear and pressure rise in heating volume of self-blast type ultra-high pressure nitrogen arc. Plasma Physics and Technology, 6(1):23–26, 2019. doi:10.14311/ppt.2019.1.23.

F. Abid, K. Niayesh, S. B. Thimmappa, C. Espedal, and N. S. Støa-Aanensen. Thermal interruption performance of ultrahigh-pressure free-burning nitrogen arc. The International Symposium on High Voltage Engineering, Springer, pages 663–671, 2019. doi:10.1007/978-3-030-31680-8_65.

F. Abid, K. Niayesh, E. Viken, N. S. Støa-Aanensen, E. Jonsson, and H. K. Meyer. Effect of filling pressure on post-arc gap recovery of N2. IEEE Transactions on Dielectrics and Electrical Insulation, 27(4):1339–1347, 2020. doi:10.1109/TDEI.2020.008844.

J. Zhang, E. J. M. van Heesch, F. J. C. M. Beckers, A. J. M. Pemen, R. P. P. Smeets, T. Namihira, and A. H. Markosyan. Breakdown strength and dielectric recovery in a high pressure supercritical nitrogen switch. IEEE Transactions on Dielectrics and Electrical Insulations, 22(4):1823–1832, 2015. doi:10.1109/TDEI.2015.005013.

M. Seeger, P. Stoller, and A. Garyfallos. Breakdown fields in synthetic air, CO2, a CO2/O2 mixture, and CF4 in the pressure range 0.5–10 mpa. IEEE Transactions on Dielectrics and Electrical Insulation, 24(3):1582–1591, 2017. doi:10.1109/TDEI.2017.006517.

Downloads

Published

2021-09-01

Issue

Section

Articles