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Abstract — The paper [1] described a mathematical 

model of the electric muffle furnace. A specific solution of 

real models has been already solved and presented within 

this paper. The first one is the muffle heating furnace 

equipped with a fireproof clay muffle (MODEL I) and 

thermal insulation of expanded fireproof clay. As the second 

variant the furnace equipped with a silicon carbide muffle 

(MODEL II) and with a thermal insulation of fibre ceramic 

boards of Sibral type is presented. Further the paper 

presents the results of simulations of the same heating cycles 

performed using the mathematical model presented in the 

paper [1] and comparing these results with the progression 

of the values measured in real furnaces. 

Experiment and simulation assessment will be carried out 

as the final step hereof. Equipment parameters are sources 

from technical documentations of the manufacturers. 

Keywords — muffle furnace, thermal process, heating 

element, furnace lining and mathematical model 

 

I. MODEL I 

Manufacturer 

Elektrim – Poland, year of equipment manufacture: 1963 

 

Fig. 1.  MODEL I – Fireproof clay muffle furnace. 

 

 

A. Technical Description 

The muffle furnace is designed for the performance of 
heating processes; see [1]. 

Furnace steel construction is made of 2.5 mm sheet 
metal. Inside the furnace body is a fireproof clay muffle 
with a coiled heating element. The muffle inside the 
muffle is covered with a ceramic material. The heating 
element is made of the resistance wire KANTHAL A1. 

The heating insulation consists of extended fireproof 
clay furnace blocks. The furnace body is coated with 
protecting paint. 

B. Technical Parameters 

Furnace type PPEM-2/156 
Rated output 3.6 kW 
Rated voltage 1×220 V 
Rated temperature 1100 °C 
Heating element resistance at 20 °C 13.2 Ω 
Heating element material Kanthal A1 
Diameter of wire 2.0 mm 
Specific surface load 2.0 W/cm

2
 

C. Furnace Workspace Dimensions 

Width 180 mm 
Height 120 mm 
Length 400 mm 

D. Furnace Outer Dimensions 

Width 520 mm 
Height 722 mm 
Length 830 mm 

Mass 150 kg 

II. MODEL II 

A. Technical Description 

The muffle furnace was designed for the purposes of 
experimental measurement of heating processes using the 
present-day knowledge within the field, see [1]. 

Inside the furnace body the SiC muffle with a coiled 
heating element of the resistance wire KANTHAL A1 is 
placed. 

Furnace heat insulation is made of fibre materials of 
high thermal insulation capacity and low energy 
accumulation. 
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Fig. 2.  MODEL II – Fibre materials furnace. 

B. Technical Parameters 

Rated output 2.2 kW 
Rated voltage 1×230 V 
Rated temperature 1100 °C 
Heating element resistance at 20 °C 24.6 Ω 
Heating element material Kanthal A1 
Diameter of wire 1.4 mm 
Specific surface load 1.925 W/cm

2
 

C. Furnace Workspace Dimensions 

 
Width 170.mm 
Height 95 mm 
Length 320 mm 

D. Furnace Outer Dimensions 

Width 400 mm 
Height 600 mm 
Length 530 mm 

Mass 27 kg 

III. TECHNICAL IMPLEMENTATION OF THE EXPERIMENTS  

IN THE FURNACES 

The present case means: the furnaces were connected to 
variable voltage source which consists of a tap-changing 
transformer of 220 V, 180 V and 155 V switchable taps. 
The input power of the heating system is as follows: a step 
pulse of a constant value of supply voltage for the whole 
period of the experiment; see Fig. 3. 

Resistance of the heating element is temperature 
dependent; it goes up slightly together with the material 
temperature, which means that together with the 
increasing temperature the performance output is falling 
down. 

Manufacturers set the maximum permissible 
temperature in the furnaces to 1100 °C. Having been 
aimed not to exceed this temperature during the 
experiments, it was used the controller with two-position 
control (ON/OFF) that kept the temperature inside the 
furnace at this level. The steady-state would reach, at the 
value of constant output of the used temperature, a higher 
value than the maximum permissible temperature stated 

by the manufacturer. However, the maximum permissible 
temperature could not be exceeded when this kind of 
regulator was used. 

When the experiment was finished, the furnace was 
switched out and spontaneous cooling was then initiated, 
starting at the temperature of 1100 °C. 

 

Fig. 3.  The performance of the heating system in form of step unit.  

The estimated run of temperature. 

During the experiments it were recorded: 

 Thermocouple temperature inside the furnace. 

 Temperature of a thermocouple attached to the outer 
furnace surface. 

 Electric voltage at the heating element terminals. 

 Electric current flowing through the heating element. 

The following charts show the measurement records 
related to the Model I and Model II.  

IV. DESCRIPTION OF THE CHANNELS OF EUROTHERM A 

6100 RECORDER 

Channel 

1 
Red 0 – 1200 °C 

Temperature 

progress in the 

furnace workspace 

Channel 

2 

Light 

blue 
0 – 1200 °C 

Temperature 

progress on the 

furnace surface 

Channel 

3 
Yellow 0 –250 V 

Voltage on the 

heating element  

Channel 

4 

Light 

green 
0 – 50 A 

Current flowing 

through the heating 

element  

Channel 

5 

Dark 

green 
0 – 1 

A signal specifying 

the area of heating 

element connection 

to electric energy  
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Fig. 4.  Records sourced from the EUROTHERM A 6100 recorder – a temperature cycle progression – MODEL I – 220 V voltage tap. 

 

 

 

Fig. 5.  Temperature progression in the furnace area in MODEL I for the 220 V, 180 V and 155 V voltage taps. 
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Fig. 6.  Records sourced from the EUROTHERM A 6100 recorder – a temperature cycle progression – MODEL II – 220 V voltage tap. 

 

 

 

 

Fig. 7.  Temperature progression in the furnace area in MODEL II for the 220 V, 180 V and 155 V voltage taps. 

 

 

 

 

https://creativecommons.org/licenses/?lang=en
http://dx.doi.org/10.14311/TEE.2016.2.036


Transactions on Electrical Engineering, Vol. 5 (2016), No. 2   40 

TELEN2016006    
DOI 10.14311/TEE.2016.2.036 

V. HEATING SIMULATION USING A MATHEMATICAL 

MODEL OF THE PAPER [1] 

Due to different placing of the heating element in both 
models, modifications were performed in the differential 
equation system, as well as in the heat flow relations. 

VI. A SYSTEM OF TEMPERATURE DIFFERENTIAL EQUATIONS 

OF STATE  

Generally: The change of the thermal capacity content 
is given by the sum of the input heat which flows into the 
thermal capacity and the heat which flows out the thermal 
capacity. 

a) At Model I 

 

Fig. 8.  MODEL I – Fireproof clay muffle. 

A furnace made of fireproof clay materials consists of a 
heating coil which is poured with and embedded in the 
clay material which covers the muffle. In this case, the 
mass of the coil and the clay material is included in the 
M1 and a transfer carried out from it into the muffle and 
the surrounding insulation is understood as conductive 
transfer. 

b) At Model II 

 

Fig. 9.  MODEL II – The SiC muffle. 

The Sibral furnace + SiC, where the heating coil is 
placed unfixed in the space between the muffle and the 
Sibral boards the heat transfer is understood as the thermal 
radiation from a coil towards the muffle q1,2 , from a coil 
towards the Sibral q1,4 and from the muffle towards the 
Sibral q2,4. The convection is not considered. 

For the reasons of clarity it is to show the modified 
relations within the Model I and II. 

Heating coil: 
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Model I – the fireproof clay muffle: 
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Model II – the SiC muffle: 
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Side walls + ceiling + hearth lining of the furnace: 
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The door + back walls lining: 
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Gas in the furnace: 
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Thermometer: 
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VII. RELATIONS FOR HEAT FLOWS 

The input power flowing into the furnace is affected by 
the change of rated resistivity of the heating element 
according to the temperature t1 and may be regulated 
according to the thermocouple temperature t14, eventually 
according to the time τ. 

  141elel ,, ttqq   (15.a) 

Model I – the flow q2,4 is not in the fireproof clay furnace 
version: 

    2211212,12,1 22  ssttSq   (16.a) 

    4411414,14,1 22  ssttSq   (16.1.a) 

Model II – from the Sibral and SiC furnace version: 

     2,12,1

4

2

4

12,1č1,2 273273  Sttq 
 (16.b) 

     4,14,1

4

4

4

14,1č1,4 273273  Sttq   (16.1.b) 

     4,24,2

4

4

4

24,2č2,4 273273  Sttq   (16.2) 

Next, for both versions it is applied the following: 

    3322323,23,2 22  ssttSq   (17) 

   3k13313,3k13,3 ttSq   (18) 

      8,38,3

4

8

4
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   44414,14,1 2sttSq 

 (21) 

    5544545,45,4 22  ssttSq   (22) 

    6655656,56,5 22  ssttSq   (23) 

    7766767,67,6 22  ssttSq   (24) 
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4

14
4
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    10109910910,910,9 22  ssttSq   (30) 

    11111010111011,1011,10 22  ssttSq   (31) 

    12121111121112,1112,11 22  ssttSq   (32) 
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The time course of the thermal process in a real furnace is 
in the mathematical model simulated using the movement 
trajectory in a 15 dimension space-time coordinates of 
which are: (τ, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14). 

VIII. PHYSICAL PARAMETERS OF MATERIALS 

Heating coil – Kanthal A1 

Model I – Kanthal + fireproof clay material 

Specific mass ρ (kg/m
3
): 1071 

Specific heat c (J/kgK): 934 + 0.671t 
Heat conductivity λ (W/mK): 0.417 + 8.69·10

-5
t 

Diameter of heating coil: 0.014 m, diameter of wire: 
2.0 mm, length of wire: 30.3 m. 

Model II 

Mass M (kg): 0.281 
Specific heat c (J/kgK): 460 
Emissivity ε (1): 0.7 
Diameter of heating coil: 0.010 m, diameter of wire: 
1.4 mm, length of wire: 25.75 m. 

Muffle 

Model I – dense fireproof clay SII 

Specific mass ρ (kg/m
3
): 1900 

Specific heat c (J/kgK): 934 + 0.671t 
Heat conductivity λ (W/mK): 1.12 + 1.75·10

−4
t 

Emissivity ε (1): 0.85 − 1·10
−4

t 

Model II – Silicon carbide SiC 

Specific mass ρ (kg/m
3
): 3100 

Specific heat c (J/kgK):  
 642 + 1.648t − 0.0015t

2
 + 0.0000005t

3
 

Heat conductivity λ (W/mK): 60 
Emissivity ε (1): 0.93 

Furnace lining 

Model I – Foamed clay 

Specific mass ρ (kg/m
3
): 732 

Specific heat c (J/kgK): 934 + 0.671t 
Heat conductivity λ (W/mK): 0.188 + 3.91·10

−5
t 

Emissivity ε (1): 0.85 − 1·10
−4

t 
Steel sheathing: 2.5 mm, emissivity of the Al paint: 0.5 . 

Model II – Sibral boards (Ceraboard) 

Specific mass ρ (kg/m
3
): 310·1.5 

Specific heat c (J/kgK): 724 + 1.21t − 0.0005t
2
 

Heat conductivity λ (W/mK):  
 0.078 − 1.74·10

−5
t + 1.65·10

−7
t
2
 

Emissivity ε (1): 0.56 

Gas inside the furnace – Nitrogen 

Specific mass ρ (kg/m
3
): 1.25·273/(t13+273) 

Specific heat c (J/kgK): 1043 

Thermometer – sheathed thermocouple NiCr-Ni 

Specific mass ρ (kg/m
3
): 4000 

Specific heat c (J/kgK): 700 
Emissivity ε (1): 0.65 + 1.22·10

−4
t 
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IX. GEOMETRY OF MODEL 

Model I 

Furnace outer dimensions 

Width (m): 0.520 
Height (m): 0.520 
Depth (m): 0.600 

Muffle outer dimensions 

Width (m): 0.210 
Height (m): 0.160 
Depth (m): 0.415 

Muffle inner dimensions 

Width (m): 0.180 
Height (m): 0.130 
Depth (m): 0.400 

Thickness of the insulation lining of the side walls (m):
 0.135 
Thickness of the insulation lining of the ceiling and 
furnace hearth (m): 0.160 
Thickness of the insulation lining of the door and back 
wall (m): 0.140 
Thickness of the furnace steel sheathing (m): 
 0.0025 

Sheathed thermocouple 

Diameter (m): 0.002 
The length sticking out into the furnace (m): 0.050 

Model II 

Furnace outer dimensions 

Width (m): 0.325 
Height (m): 0.245 
Depth (m): 0.320 

Muffle outer dimensions 

Width (m): 0.185 
Height (m): 0.105 
Depth (m): 0.290 

Muffle inner dimensions 

Width (m): 0,175 
Height (m): 0.095 
Depth (m): 0.280 

Thickness of the insulation lining of the side walls, ceiling 
and furnace hearth (m): 0.060 
Thickness of the insulation lining of the door and back 
wall (m): 0.040 

Sheathed thermocouple 

Diameter (m): 0.002 
The length sticking out into the furnace (m): 0.050 

X. DETERMINATION OF THE , ,  VALUES 

Coefficients of convective heat passage k,i 

Inside the furnace, as well as on its outer surface, there 
is no forced gas flow, so in both cases we can count with 
natural convection. 

To determine the coefficients of convection passage the 
criterion equations of similarity analysis are used. 

Considering the fact that together with the growing 
temperature the convection ratio against the radiation is 
rapidly falling down, any detailed calculation will not be 
presented for the convection case and similar cases values, 
verified by practice, will be used. 

The natural convection on the furnace outer surface 
may be calculated as follows: k = 4 (W/m

2
K). On the 

furnace inner surface: k = 8 (W/m
2
K). 

Relative emissivity i,j 

Within a closed set of two isothermal areas of the 
relative emissivity 1 and 2 is valid: 

  1111 212,1    (37) 

Angular coefficients of the exposure to radiation i,j 

For a closed set of two isothermal areas F1 and F2 it is 
valid: 

 1  1,2   (38) 

 
2

1
1,2  

F

F
  (39) 

 
12,1  FF   (40) 

 
 

Fig. 10.a  A closed set of curved 

concave and non-concave 
surfaces. 

Fig. 10.b  A body of non-

concave surface is inside a 

body of a concave surface. 

 
These relations will be used to determine 

 
3,8

38 SS  , 
88,3 SS   (41) 

Temperature sensor is from all its sides surrounded with 
radiating surfaces S3 and S8. 

For angular coefficients 3,14 and 8,14 : 

 1  8,143,14   (42) 

Using the mathematical models of fireproof clay and 
Sibral furnaces the simulations imitating the measured 
heats, heat persistence and cooling of real furnaces were 
performed. 

XI. GRAPHICAL REPRESENTATION OF SIMULATION RESULTS 

The dashed line is used for the temperature courses 
measured at the furnace, and the dotted line is used to 
mark the corresponding course which was calculated.
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Fig. 11.  MODEL I – Temperatures – Tap voltage 220 V. 

 

 

 

Fig. 12.  MODEL I – Selected temperatures – Tap voltage 220 V. 
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Fig. 13.  MODEL I – Heat flows – Tap voltage 220 V. 

 

 

 

Fig. 14.  MODEL II – Temperatures – Tap voltage 220 V. 
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Fig. 15.  MODEL II – Selected temperatures – Tap voltage 220 V. 

 

 

 

Fig. 16.  MODEL II – Heat flows – Tap voltage 220 V. 
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XII. CONCLUSION 

Comparing the courses of temperatures measured in 
real furnaces with the courses of the calculated 
simulations using the mathematical models shows the 
results of very good matching. 

Thus, it can be concluded that the developed 
mathematical model of a heating and cooling within the 
electric muffle furnace imitates at a good level the 
processes which are being performed in real furnaces. 

Generally, it is valid that simulations in computer 
models of dynamic systems are typical for a number of 
advantages against the experiments performed on real 
equipment and devices. Using them we are allowed to test 
the behaviour of such equipment that are being designed 
and have not been existed yet. Also, in this way, we have 

the possibility to simulate the states or processes that 
would be in case of real equipment understood as risky 
ones or high-priced. 

However, the mathematical models bear also significant 
risks, their behaviour differs significantly from the real 
situation, if, in particular, in case of their development 
were used improper simplifications or if wrong ideas of 
their developers were applied. 
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