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Abstract — In this paper a method is introduced which 

models the resulting motor torque and current dynamics 

directly from the flux linkages. With the introduced method 

to process the flux linkage characteristics it is sufficient to 

calculate half of an electrical period to receive all 

information for modelling the system’s behaviour, even for 

both long and short flux path mutual coupling. The model is 

validated by 2D finite element analysis and verified by 

measurement results. 
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I. INTRODUCTION 

The power density of switched reluctance motors can 
be increased by high speeds or by minimizing the yoke 
thickness. While the latter can lead to an increase of noise 
[1], this drawback can be acceptable in many applications, 
e.g. a starter-generator in a conventional car, which is 
masked by the combustion engine. For this application 
low noise emission is not that relevant, but a high power 
density and a low price is most important. These are 
properties which can be fulfilled by a SRM with 
minimized yoke thickness. To accurately simulate or 
control such a motor an improved SRM model is 
necessary which incorporates the mutual coupling 
between the motor phases. 

The effect of mutual coupling has been discussed by 
several authors [2–5]. Especially in [2] the influence has 
been discussed in detail and was proven by experiment. It 
has been shown that mutual coupling and the consequent 
torque deterioration is dependent on the phase connection 
sequence [2, 3]. An alternating stator connection sequence 
of north and south poles leads to a better torque output 
than subsequent north or south poles. 

While the voltage equation of the SRM has been 
modeled by several authors by using flux linkages, e.g. to 
realize sensorless control schemes [4, 6], there is no 
correct solution to model the resulting torque by flux 
linkages. There are some publications which model the 
resulting torque by self and mutual inductances [3, 7]. 
This is possible but more complicated than using flux 
linkages, which can be measured [2], to calculate the 
resulting torque. In [5] the resulting torque of mutual 
coupled flux paths is stored in look up tables, which has 
the disadvantage that the torque must be calculated by a 
reluctance model or finite element analysis (FEA) and 
cannot be measured on a real motor with sufficient 
accuracy. 

In the following Section the dynamic model of the SRM 
with mutual coupled flux paths is theoretically derived by 
the theory of energy functionals. In Section III the theory 
is applied to a 3-phase SRM with the necessary data 
derived from a static finite element analysis. With only 
half an electrical period it is possible to describe the total 
dynamic behavior, both for pole commutation with short 
or long flux paths. The validation of the dynamic model is 
done in Section IV, by calculating the phase currents 
offline in a system simulation with Direct Instantaneous 
Torque Control (DITC) [8] and exporting them to a 
dynamic 2D finite element analysis. In Section V the 
model is verified by comparison of simulated and 
measured current profiles and the mean output torque at 
different operating points. 

This paper is an extended version of [9] which verifies 
the SRM model and the FEA validation by measurement 
results.   

II. DERIVATION OF THE GENERALIZED MODEL 

To simulate or control an 𝑛-phase SRM the terminal 
voltage 𝒖 = (𝑢1, 𝑢2, … , 𝑢𝑛), the input current 𝒊 =
(𝑖1, 𝑖2, … , 𝑖𝑛), the torque generation 𝑇 and the motor speed 
Ω are of interest. The conversion between these system 
variables can be done by the theory of energy functionals. 
For electrical machines this theory is derived, for example, 
in [10] and applied to a permanent magnet machine in 
[11]. As depicted in Fig. 1, the electrical system and the 
mechanical system are coupled by an electromagnetic 
energy converter [10]. 

It is assumed that the energy converter has no 
dissipative components, which is true if all loss 
components, e.g. the resistive losses, the friction losses 
and even the iron losses, are neglected or modeled outside 
the coupling field in the electrical or mechanical system. 
Thus the internal currents and voltages (𝒊, 𝒖) do not need 
to be the same as the terminal currents and voltages 
(𝒊e, 𝒖e). The same applies to the internal generalized 
mechanical force and velocity (𝑇, Ω)  and the external 
torque and angular velocity (𝑇e, Ωe). Providing that the 
internal currents 𝒊 = (𝑖1, 𝑖2, … , 𝑖𝑛) and the internal 
generalized force 𝑇 are independent, the energy 𝑊m at the 
time 𝑡 which is stored by the magnetic field can be stated 
as 

 Wm(𝑡) = 𝑊m(0) 

 + ∫ (∑ 𝑢𝑘(�̃�)𝑖𝑘(�̃�) − Ω(�̃�)𝑇(�̃�))𝑛
𝑘=1

𝑡

0
d�̃� (1) 
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Fig. 1.  System components of an electric motor, coupled by the 

system variables. 

with the electrical power of each node 𝑃el,𝑘 = 𝑢𝑘 ⋅ 𝑖𝑘 and 
the mechanical power 𝑃mech = 𝑇 ⋅ Ω. Here the 
nomenclature is chosen that field energy is increased by (a 
positive) electrical power and decreased by mechanical 
power. As 𝑢𝑘 = dΨk/d𝑡 and Ω = d𝜃/d𝑡, with the 
magnetic flux linkage 𝚿 = (Ψ1, Ψ2, … , Ψ𝑛) and the 
angular motor angle 𝜃, equation (1) follows to 

 Wm(𝜃, 𝚿) = 𝑊m(𝜃0, 𝚿𝟎) + ∫ ∑ 𝑖𝑘(𝜃, �̃�)dΨ̃𝑘
𝑛
𝑘=1

𝚿

𝚿𝟎
 

 − ∫ 𝑇(�̃�, 𝚿)d�̃�
𝜃

𝜃0
 (2) 

Since it has been assumed that the inner magnetic field 
has no dissipative components the following condition 
holds true [12]: 

 
𝜕Ψ𝑗

𝜕𝑟𝑘
=

𝜕Ψ𝑘

𝜕𝑟𝑗
   (3) 

with 𝑗, 𝑘 = 1,2, … , 𝑛 + 1 and 𝑗 ≠ 𝑘. This means that the 
integral of (2) is path independent and so it can be 
rearranged to 

 Wm(𝜃, 𝚿) = 𝑊m(𝜃0, 𝚿𝟎) + ∫ ∑
∂Wm(𝜃,�̃�)

𝜕Ψ̃𝑘
dΨ̃𝑘

𝑛
𝑘=1

𝚿

𝚿𝟎
 

 − ∫
∂Wm(�̃�,𝚿)

𝜕�̃�𝑘
d�̃�

𝜃

𝜃0
 (4) 

By comparing the coefficients of (2) and (4) the current 
in dependence of the flux linkages and the torque can be 
derived. As it is more intuitive to describe the flux 
linkages in dependence of the phase currents the Legendre 
transformation 

 𝑊m
∗(𝜃, 𝒊) = 𝚿(𝜃, 𝒊) ⋅ 𝒊 − 𝑊(𝚿(𝜃, 𝒊), 𝜃) (5) 

is applied to yield the coenergy 𝑊m
∗  with the independent 

variables phase currents 𝒊 and motor angle 𝜃. As a result, 
equations (2) and (4) lead to (6) and (7): 

 𝑊m
∗(𝜃, 𝒊) = 𝑊m

∗(𝜃0, 𝒊𝟎) 

 + ∫ ∑ Ψ𝑘(𝜃, �̃�)d𝑖̃𝑘 − ∫ 𝑇(�̃�, 𝒊)d�̃�
𝜃

𝜃0

𝑛
𝑘=1

𝚿

𝚿𝟎
 (6) 

 𝑊m
∗(𝜃, 𝒊) = 𝑊m

∗(𝜃0, 𝒊𝟎) 

 + ∫ ∑
𝜕𝑊m

∗ (𝜃,�̃�)

𝜕�̃�𝑘
d𝑖̃𝑘 − ∫

𝜕𝑊m
∗ (�̃�,𝒊)

𝜕�̃�𝑘
d�̃�

𝜃

𝜃0

𝑛
𝑘=1

𝚿

𝚿𝟎
 (7) 

From (6) and (7) the resulting torque can be derived by 
comparing the coefficients: 

 𝑇 =
𝜕𝑊m

∗

𝜕𝜃
 (8) 

Furthermore, by an appropriate choice of (𝜃0, 𝒊𝟎) the 
term 𝑊m

∗(𝜃0, 𝒊𝟎) equals zero and with a fixed angle 𝜃 =
𝜃0 the coenergy can be derived as follows: 

 

 𝑊m
∗(𝜃0, 𝒊) = ∫ ∑ Ψ𝑘(𝜃0, �̃�)d𝑖̃𝑘

𝑛
𝑘=1

𝒊

𝒊0
 (9) 

This equation implies that the coenergy can be derived 
for a fixed angle by integrating the flux linkage over each 
phase current and summation of the results for each phase.  

The magnetic flux linkage 𝚿 in dependence of the 
current 𝒊 can be derived by a finite element analysis or by 
measurement from the general voltage equation: 

 𝒖e  =  𝑹𝒊 +
d

d𝑡
𝚿 (10) 

This implies that all electric and magnetic losses are 
known and can be modeled as a series resistance 𝑹, which 
requires that the external currents 𝒊e equal the internal 
currents 𝒊. This assumption is not generally valid and 
represents an approximation. A practical implementation 
to measure the flux linkages of each phase with mutual 
coupling can be found in [2]. 

The voltage equation in dependence of the state 
variables current and motor angle can be derived from 
(10) by partial differentiation:  

 𝒖e  = 𝑹𝒊 +
𝜕𝚿

𝜕𝜃
⋅ Ω + ∑

𝜕𝚿

𝜕𝑖𝑘

𝑛
𝑘=1

d𝑖𝑘

d𝑡
 (11) 

with the angular velocity Ω = 𝜕𝜃/𝜕𝑡. 

In summary the physical behavior of the 𝑛-phase SRM 
can be described by the torque equation (8) and the 
voltage equation (11) in dependency of the state variables, 
which are the phase currents 𝒊 = (𝑖1, 𝑖2, … , 𝑖𝑛) and the 
motor angle 𝜃. 

III. APPLICATION OF THE MODEL TO A 3-PHASE SRM 

This theory is applied to model the physical behavior of 
a three phase SRM. The model is implemented in Matlab 
Simscape, which allows non-causal modeling. Due to the 
boundary conditions the non-defined variables are 
determined, e.g. with a defined voltage input and a 
defined motor speed the resulting torque and input current 
are derived by the model. If the load torque is given as a 
boundary condition the resulting motor speed is 
determined in the simulation. 

The physical behavior of each phase is modeled 
individually in dependence of all state variables (𝜃, 𝒊) =
(𝜃, 𝑖1, 𝑖2, 𝑖3). It is presumed that the current profiles of 
each phase are identical with an electrical phase shift of 
120 °. That is why only phase one is described here. 

Applying (11) to a three phase SRM the voltage of 
phase one leads to 

 𝑢1 = 𝑅1𝑖1 +
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝜃

d𝜃

d𝑡
 

 +
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝑖1

d𝑖1

d𝑡
+

𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝑖2

d𝑖2

d𝑡
 

 +
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝑖3

d𝑖3

d𝑡
 (12) 

It can be seen that the voltage equation of phase one 
only depends on the flux linkage of phase one. 

In contrast, the resulting torque of a mutual coupled 
SRM cannot be allocated to the individual phases as 
shown below. The resulting torque is derived by (8) with 
the coenergy given by (9). For a three phase SRM the 
coenergy is determined as follows: 

 

http://dx.doi.org/10.14311/TEE.2016.3.059
https://creativecommons.org/licenses/?lang=en


Transactions on Electrical Engineering, Vol. 5 (2016), No. 3 61 

TELEN2016009   

DOI 10.14311/TEE.2016.3.059 

 𝑊m
∗(𝜃0, 𝒊) = ∫ Ψ1(𝜃0, 𝑖1̃, 0,0)d𝑖1̃

𝒊𝟏

0
 

 + ∫ Ψ2(𝜃0, 𝑖1, 𝑖̃2, 0)d𝑖̃2
𝒊𝟐

0
 

 +  ∫ Ψ3(𝜃0, 𝑖1, 𝑖2, 𝑖̃3)d𝑖3̃
𝒊𝟑

0
 (13) 

Due to the path independence of the integral of (9) the 
coenergy can also be stated as (14) or (15). 

 𝑊m
∗(𝜃0, 𝒊) =  ∫ Ψ2(𝜃0, 0, 𝑖̃2, 0)d𝑖̃2

𝒊𝟐

0
 

 + ∫ Ψ1(𝜃0, 𝑖1̃, 𝑖2, 0)d𝑖1̃
𝒊𝟏

0
 

 +  ∫ Ψ3(𝜃0, 𝑖1, 𝑖2, 𝑖̃3)d𝑖3̃
𝒊𝟑

0
 (14) 

 𝑊m
∗(𝜃0, 𝒊) = ∫ Ψ3(𝜃0, 0,0, 𝑖3̃)d𝑖̃3

𝒊𝟑

0
 

 + ∫ Ψ1(𝜃0, 𝑖1̃, 0, 𝑖3)d𝑖1̃
𝒊𝟏

0
 

 +  ∫ Ψ2(𝜃0, 𝑖1, 𝑖̃2, 𝑖3)d𝑖2̃
𝒊𝟐

0
 (15) 

The angle 𝜃0 has to be varied to receive the coenergy over 
the whole domain of 𝜃. 

The resulting torque can be calculated by the derivative 
of coenergy with respect to angle, as stated in (8). From a 
mathematical perspective, it makes sense to separate the 
terms of (13), (14) and (15) because they can be 
differentiated independently. Thus, equation (13) is 
separated to 

 𝑊m
∗(𝜃, 𝒊) =   𝑊m,1

∗ (𝜃, 𝑖1) + 𝑊m,2
∗ (𝜃, 𝑖1, 𝑖2) 

 +  𝑊m,3
∗ (𝜃, 𝑖1, 𝑖2, 𝑖3) (16) 

And the coenergy derivatives follow to: 

 𝑇1 =
𝜕𝑊m,1

∗

𝜕𝜃
 (17) 

 𝑇2 =
𝜕𝑊m,2

∗

𝜕𝜃
 (18) 

 𝑇3 =
𝜕𝑊m,3

∗

𝜕𝜃
 (19) 

It is again pointed out, that these terms cannot be 
assigned generally to the individual phases. This is only 
admissible if there is no mutual coupling and thus the flux 
linkages of the different phases are independent of the 
other phase currents. By consideration of the mutual 
coupling the assignment of 𝑇1, 𝑇2 and 𝑇3 is not unique as 
the comparison of (13) and (14) shows. This fact is 
important for the following implementation of the SRM 
model in Matlab Simscape. 

A. Implementation in Matlab Simscape 

Each motor phase is implemented in Matlab Simscape 
independently and with the same structure. The mutual 
coupling is only considered by the characteristic data and 
the input variables. 

The following characteristic data in dependence of the 
respective motor angle and phase currents is stored in 
maps inside the SRM model: 

 𝑇a(𝜃, 𝑖1, 𝑖2, 𝑖3) =
𝜕

𝜕𝜃
∫ Ψ1(𝜃, 𝑖1̃, 𝑖2, 0) ⋅ d𝑖1̃

𝑖1

0
 (20) 

 𝑇b(𝜃, 𝑖1, 𝑖2, 𝑖3) =
𝜕

𝜕𝜃
∫ Ψ1(𝜃, 𝑖1̃, 0, 𝑖3) ⋅ d𝑖1̃

𝑖1

0
 (21) 

 𝐿1(𝜃, 𝑖1, 𝑖2, 𝑖3) =
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝑖1
 (22) 

 𝐿2(𝜃, 𝑖1, 𝑖2, 𝑖3) =
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝑖2
 (23) 

 𝐿3(𝜃, 𝑖1, 𝑖2, 𝑖3) =
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝑖3
 (24) 

 Λ(𝜃, 𝑖1, 𝑖2, 𝑖3) =
𝜕Ψ1(𝜃,𝑖1,𝑖2,𝑖3)

𝜕𝜃
 (25) 

whereas either 𝑇a or 𝑇b is used for the torque generation 
for a certain time step. The distinction between 𝑇a or 𝑇b is 
necessary because of symmetry reasons. In addition it can 
be used to describe long and short flux path behavior with 
only one data set [9]. According to (11) the characteristic 
maps 𝐿1, 𝐿2, 𝐿3 and Λ are used to calculate the phase 
voltage. The block diagram for one motor phase is 
depicted in Fig. 2.  

This model structure is carried out analogously for each 
motor phase. Only the angle 𝜃 is electrically shifted by 
120 ° and the currents 𝑖2 and 𝑖3 are assigned to the other 
respective phase currents. 

The implementation of the torque calculation is subject 
to certain restrictions, since not all terms of (13) to (15) 
are taken into account with 𝑇a or 𝑇b. To explain this 
restriction and to demonstrate the advantages of this 
approach the concept of torque modelling is discussed in 
detail below.  

B. Torque Modelling 

Depending on the current waveform and the motor 
angle the resulting torque is generated by one, two or 
more phases. For the three phase SRM the torque is 
normally produced by the current of one or two phases – 
see Fig. 3.  

The region where two phases are active simultaneously 
is called the transition region. At this region one phase 
current is built up while the other phase current is reduced.  

Ta/Tb
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θ 
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d/dt
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x

i1

T

u

 

Fig. 2.  Implementation of the SRM model in Matlab Simscape. This 

structure applies for each phase with the respective input variables. 
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Fig. 3.  Current waveform of the SRM in lower speed range. 

Since every phase is modelled by the same structure 
and the same data set each motor phase has its own 
reference system, and thus its separate phase order. An 
example is given with respect to Fig. 4. Here the blue 
current profile of phase A reduces in the transition region 
and the red current of phase B builds up. The phase order 
is (3 – 1 – 2) for both phases. Whereas phase A represents 
phase 1 in its reference system and phase B also 
represents phase 1 in its reference system. Important is the 
fact that phase A passes through the transition (3 – 1) and 
phase B goes through (1 – 2). 

If (20) is applied for both phases with its different 
instantaneous variables (Index A or B) and the resulting 
torque components are superimposed it follows: 

 𝑇 =
𝜕

𝜕𝜃
∫ Ψ1(𝜃A, 𝑖1̃, 𝑖2,A, 0) ⋅ d𝑖1̃

𝑖1.A

0
 

 +
𝜕

𝜕𝜃
∫ Ψ1(𝜃B, 𝑖1̃, 𝑖2,B = 0,0) ⋅ d𝑖1̃

𝑖1.B

0
 (26) 

i

t

(Phase 1)

A B

(Phase 1)
(Phase 2)(Phase 3)

 

Fig. 4.  Idealized transtition region of two phase currents. The current 
of phase B is built up and the current of phase A is reduced. 

Comparison of (26) with (13) and its derivative with 
respect to motor angle shows that this is exactly the 
resulting torque of two active motor phases by taking into 
account mutual coupling. The application of (26) leads to 
the same results. The reason why a second torque map is 
necessary is given by symmetry conditions which will be 
discussed later. 

At very high motor speeds it is possible that all three 
phases are active at the same time. The outgoing  phase is 
normally very small which is why this influence can be 
neglected, due to low mutual coupling – see Fig. 5.  

Only if the Continuous Conduction Mode [13] is 
applied, where phase current are not forced down to zero 
at the end of each period, the limits of the proposed model 
are reached. 

On the other hand the model structure is very simple 
and the influence of the connection sequence can be 
modeled by only one dataset. 

C. Influence of the Phase Connecting Sequence on the 

Resulting Torque Generation 

The phases of an SRM are usually supplied 
independently by an inverter with bipolar voltage and 

unipolar current capability. Depending on the current 
direction or polarization of the different phase coils the 
mutual torque generation can be different. It can be 
distinguished between a short flux path (SFP) connection 
(see Fig. 6 left), where two consecutive stator teeth are 
oppositely polarized and a long flux path (LFP) 
connection (see Fig. 6 right), where two consecutive stator 
teeth are polarized in the same direction. While 
commutation the flux density in the main mutual flux path 
can be very high and thus saturation occurs. The longer 
the saturated flux paths are the higher is the total 
reluctance which lowers the maximum flux linkages. 

The influence of an exemplary connection sequence can 
be seen in Fig. 7. The current waveforms are periodically 
but the resulting torque is not. The first and last transitions 
are done with a LFP connection and the middle transition 
is done with a SFP connection. Apparently the mutual 
torque generation with a LFP connection is much lower 
than with a SFP connection. 

 

 

Fig. 5.  Current waveform of the SRM at very high speed. 

A

B A

B A B

B A

 

Fig. 6.  Phase connection sequence with opposed polarization ‘short 

flux path’ (left) and with two adjacent poles polarized in the same 

direction ‘long flux path’ (right). Here the flux is commutating from 
pole pair A to pole pair B. 

 

Fig. 7.  Depending on the phase connection sequence the resulting 
motor torque is different for two overlapping phase currents. With LFP 

connection the resulting torque is much lower. 
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D. Data Acquisition and Processing 

The presented SRM model only requires the flux 
linkage in dependence of the motor angle and the phase 
currents. This can be obtained by measurement as 
explained in [3] or by finite element analysis (FEA). In 
this work the data acquisition is done by simulation with 
the program Flux2D from Cedrat [13]. 

For the data acquisition the rotor is fixed at a certain 
angle and through current sources the phase currents are 
systematically varied to get the corresponding flux 
linkages. After that the rotor is moved by an angle step 
and the procedure is repeated until a whole electrical 
period is recorded. If only the behavior of LFP or SFP 
connection is of interest, half an electrical period is 
sufficient because of symmetry conditions. 

The data processing and the consideration of symmetry 
conditions is explained in detail in the related conference 
paper [9]. 

E. Modelling of Short and Long Flux Path Behavior with 

One Data Set 

As stated before both the SFP and LFP behavior can be 
modeled very accurately with only one data set. This can 
be done if either phase 2 or phase 3 is connected in SFP 
connection and the other in LFP connection while the data 
is collected. In this case LFP and SFP behavior can be 
switched by interchanging 𝑇a and 𝑇b in (22) and (23). 

This method causes a small error for 𝜃 ∈ (180 °, 360 °] 
because the wrong ‘flux path’ connection is taken into 
account for this range. Since the main transition range is 
completed before 𝜃 ∈ (180 °, 360 °], this has only a small 
influence on the turn off voltage but torque calculation has 
almost no errors. 

The application of this methodology is very useful if a 
SRM should be operated with a direct torque control 
method which should be able to consider both SFP and 
LFP behavior. Such an example will be shown in the 
following Section. 

IV. VALIDATION OF THE MODEL 

For the validation of the model, it is applied to a three 
phase SRM with 12 stator teeth and 8 rotor teeth. The 
motor has been designed by a cascaded design 
methodology which optimizes the geometry by an outer 
geometry optimization and an inner control optimization 
loop for the application in an electric vehicle as introduced 
in [14]. An overview of the motor parameters is given in 
Table I. 

The flux linkage recording of phase 1 in dependence of 
all motor currents and the motor angle (from 0 ° to 180 °) 
is done by a static FEA with the program Flux2D. From 
that the parameter maps are determined as explained in the 
Sections before. For the following examples 25 angle grid 
points and only 15 grid points for each phase current 
ranging from 0 A to 350 A have been chosen which make 
still 84,375 grid points in total. With an Intel i7-377K and 
16 GB RAM this takes about 72 hours of calculation time. 

For the validation of the model the current profiles are 
calculated offline in Matlab Simscape and are then 
imported into a dynamic FEA in Flux2D by table values. 
To calculate the current profiles the model is implemented 

in Matlab Simscape as depicted in Fig. 2 in combination 
with an inverter model. The operation is carried out with a 
Direct Instantaneous Torque Control (DITC) scheme [15] 
with the torque model described in this work in 
Section III. 

As a first example an operating point with 1000 
revolutions per minute and a target torque of 80 Nm is 
shown in Fig. 8. Here both the phase connection sequence 
and the data recording are done with a SFP connection. 

The resulting torque in the FEA has only a small ripple 
due to a limited switching frequency and the maximum 
voltage is mostly between +780 V and −780 V which 
indicates that the Simscape model is very accurate. The 
small voltage deviation at 1.25 ms, 3.75 ms and 6.25 ms 
can be further reduced by a higher number of current grid 
points but this further increases the calculation or 
measurement effort of the data acquisition. In comparison 
to this Fig. 9 shows the resulting torque without taking 
into account mutual coupling. 

In Section III.E it is described how both SFP and LFP 
behavior can be modeled with one dataset. Application of 
this method and interchanging between 𝑇a and 𝑇b whether 
SFP or LFP mutual coupling is presented, leads to the 
result in Fig. 10.  

TABLE I.  
MOTOR PARAMETERS 

Property Value 

rated power 150 kW 

maximum speed 30,000 rpm 

active length 205 mm 

stator diameter 170 mm 

dc link voltage 780 V 

dc link current 300 A 

 

Fig. 8.  Resulting torque and voltage in the FEA with respect to an 

offline calculated current profile. (blue: phase 1; yellow: phase 2; red: 
phase 3)  
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Fig. 9.  Resulting torque in the FEA with respect to an offline 
calculated current profile without taking into account mutual coupling. 

(blue: phase 1; yellow: phase 2; red: phase 3) 

 

Fig. 10.  Resulting torque and voltage in the FEA with respect to an 
offline calculated current profile with changing SFP and LFP transition 

regions. (blue: phase 1; yellow: phase 2; red: phase 3) 

Fig. 10 shows that the torque calculation is very good 
but the voltage has a very little error. Nonetheless, in 
direct torque control methods only torque calculation is of 
interest and thus the suggested model can be used without 
restrictions. 

V. EXPERIMENTAL VERIFICATION 

In order to verify the presented model, measurements 
on a SRM prototype are carried out and compared to the 
simulation results of the Matlab Simscape model. Average 
Torque Control [18] is used as a control strategy setting 
the active phase currents to a constant level by a hysteresis 
controller. Target current and switching angles are 
optimized offline in advance and stored in look-up tables. 

Phase currents are measured at different speeds both in 
SFP and LFP configuration. A reduced DC voltage of 
100 V is used to supply the inverter. In Fig. 11 and Fig. 12 
the results are shown for two different operating points at 
middle and high motor speed. Due to a higher inductance 
the phase current in LFP configuration is built up more 
slowly. This behavior is shown accurately in the presented 
model. Only in the region of current reduction in LFP 
configuration relevant deviations can be seen. 

Furthermore, the average torque is measured and 
compared to the simulation results. The results for the two 
operating points can be seen in Table II and Table III. 

 

Fig. 11.  Simulated and measured current waveforms at 900 rpm and a 

target torque of 115 Nm. 

 

Fig. 12.  Simulated and measured current waveforms at 2500 rpm and a 

target torque of 16 Nm. 

TABLE II.  
SIMULATED AND MEASURED TORQUE AT 900 RPM AND A TARGET 

TORQUE OF 115 NM 

 SFP LFP 

simulation 117.0 Nm 112.9 Nm 

measurement 109.3 Nm 102.7 Nm 

deviation + 7 % + 9.9 % 

TABLE III.  
SIMULATED AND MEASURED TORQUE AT 2500 RPM AND A TARGET 

TORQUE OF 16 NM 

 SFP LFP 

simulation 15.8 Nm 14.5 Nm 

measurement 15.0 Nm 13.5 Nm 

deviation + 5.3 % + 7.4 % 

 

As expected the measured torque in SFP mode is higher 
than in LFP mode. In the first operating point, measured 
torque in SFP configuration is 6.4 % higher and in the 
second operating point 11.1 % higher than in LFP 
configuration. 

In both cases the simulated torques are higher than the 
measured values. As outlined before the simulation model 
only includes copper losses neglecting other losses such as 
iron or mechanical losses. Consequently the simulated 
torque needs to be higher. 
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The same result is presented in Fig. 13 showing the 
maximum torque of the SRM and the corresponding 
efficiency in these operating points. At higher speeds the 
difference between the simulated and the measured 
efficiency increases. This indicates that frequency 
dependent eddy current losses and iron losses need to be 
considered. 

VI. CONCLUSION 

In this work the general mathematical model of the 
switched reluctance machine has been derived by the aid 
of energy functionals. The system behavior can be 
completely derived by the flux linkage in dependence of 
the state variables, which are the motor angle and the 
phase currents. 

The model has been applied to a three phase SRM. The 
proposed model implementation offers the opportunity to 
approximate the system behavior of both short and long 
flux path behavior with only one model structure and data 
set. 

The validation is done by importing offline calculated 
current profiles into a finite element analysis and 
comparing the resulting torque and voltage with the target 
values. It is shown that the model has only a small 
deviation which can be further reduced by a larger 
resolution of the recorded flux linkage map. 

In the last Section the model is verified by measurement 
results. The high correlation between the measured and 
simulated current profiles prove a high accuracy of the 
introduced model. However, for an accurate torque 
modelling, the consideration of frequency dependent 
losses is necessary, which will be part of the following 
research. 

 

Fig. 13.  Simulated and measured maximum torque and corresponding 
efficiency with SFP and LFP configuration. 
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