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Abstract — The paper deals with the proposal for finding 

the complete response of dynamic linear circuits to a 

periodic nonsinusoidal input in the MATLAB environment. 

A very powerful tool for solving the given problem is to 

transform the circuits directly into the complex frequency 

domain using the Laplace transform and then apply the 

sparse tableau analysis technique to solve them. Applying 

above-mentioned methods in the MATLAB environment, it 

is not difficult to find the complete response of dynamic 

linear circuits to the periodic input. 
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I. INTRODUCTION 

The problem of finding the complete response of 
dynamic circuits to a periodic nonsinusoidal input can be 
solved in the time or in the complex frequency domain. In 
both cases, the given problem is time-consuming activity 
that involves a lot of effort and skills in mathematics. In 
the time domain, circuit equations take the form of 
integrodifferential equations with the periodic function on 
the right-hand sides. In the complex frequency domain, 
the circuit equations take form of algebraic equations with 
the Laplace transform of the periodic function. 

MATLAB enables to reduce greatly the effort 
demanded to solve the problem of finding the complete 
response of dynamic circuits in the complex frequency 
domain made by hand. In the MATLAB environment, it is 
possible to formulate the circuit equations in a systematic 
and automatic way using the sparse tableau analysis, to 
take the Laplace transform and the Laplace inverse 
transform, and to combine this procedure with its 
symbolic computation. 

II. FINDING THE COMPLETE RESPONSE OF CIRCUIT  

TO PERIODIC NONSINUSOIDAL INPUT 

A. Circuit Equations 

In order to describe the circuit it is necessary to 
compose the circuit equations. The set of the circuit 
equations consists of two sets of equations: the equations 
that represent the topology of the circuit and the equations 
that represent the type of the circuit elements. 

The first set of the circuit equations depicts how the 
circuit elements are connected to one another in the 
circuit. These equations are called the connection 
equations. 

The second set of the circuit equations describes the 
voltage-current relationship of circuit elements and they 
are called the element equations. 

Many systematic methods are available for the 
mathematical description of the circuits, but better ones 
are those methods, which enable to formulate the circuit 
equations in a systematic and automatic way, e.g. 
modified nodal analysis and sparse tableau analysis, 
because they can be used for computer simulation of 
circuits. 

B. Sparse Tableau Analysis 

The sparse tableau analysis offers not only systematic 
and automatic approach for assembling the circuit 
equations but also their subsequent solution provides the 
currents through all elements, the voltages across all 
elements and all nodal voltages simultaneously. 

In general, the circuit equations formulated by the 
sparse tableau analysis procedure take form of a set of 
simultaneous nonlinear first-order differential equations in 
the time domain. For a purely resistive and linear circuit 
they take form of a set of simultaneous linear algebraic 
equations. When the linear circuit is transformed into its 
complex frequency domain equivalent using the Laplace 
transform, then it can be dealt with it as if it is consisted of 
sources and resistors only, because the passive elements 
can be represented as the series connection of two circuit 
elements: a complex frequency domain impedance, which 
can be regarded as generalized resistance, and the source 
of initial condition. In this case, the circuit equations take 
form of a set of simultaneous linear algebraic equations in 
the complex frequency domain. 

Let us consider a linear dynamic circuit, for which the 
connection and parameters of two-terminal elements, 
forming the circuit, are given. Let the number of the 
circuit elements (branches) be M and the number of circuit 
nodes N. The sparse tableau analysis procedure of setting 
up the circuit equations in the complex frequency domain 
consists of the two steps: the step of composing the 
connection equations and the step of composing the 
element equations. 

The connection equations are obtained by applying 
Kirchhoff’s laws to the circuit, which leads to two sets of 
linear algebraic equations in terms of the element currents 
and element voltages. The set of connection equations 
must be linearly independent. The first set of the 
connection equations can be expressed [1] 

 ( )s Ai 0 , (1) 

where ( )si  is a vector of the type (M, 1), whose elements 

are the complex frequency-domain representation of 

circuit element currents 1 2( ), ( ),..., ( )MI s I s I s ; A is the 

node versus branch reduced-incidence matrix of the type 
(N1, M), having the coefficients +1, 1, 0. 
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The second set of the connection equations can be 
expressed in terms of the element voltages and the node 
voltages as [1] 

 T( ) ( )s su A v , (2) 

where ( )su  is a vector of the type (M, 1), whose elements 

are the complex frequency-domain representation of the 

circuit element voltages 1 2( ), ( ),..., ( )MU s U s U s ; ( )sv  is  

a vector of the type (n1, 1), whose elements are the 
complex frequency-domain representation of the node 

voltages 1 2 1( ), ( ),..., ( )NV s V s V s ; T
A is the transposed 

matrix A . 

The element equations express the voltage-current 
characteristics of the circuit elements that are the relation 
between the voltage across and the current through the 
circuit element. 

Let us consider that the kth circuit element is described 
in the complex frequency domain by the voltage-current 
relationship having one of the following forms: 

( ) ( )k kU s F s , ( ) ( )k kI s F s , ( ) ( )uu
k lkl

U s c U s , 

( ) ( )ui
k lkl

U s c I s , ( ) ( )iu
k lkl

I s c U s  or ( ) ( )ii
k lkl

I s c I s , 

 (ic)
( ) ( ) ( )k k k kU s Z s I s U s   , where ( )kF s  is the 

Laplace transform of voltage/current of independent 

voltage/current sources, , , ,uu ui iu ii

kl kl kl kl
c c c c  are gains of 

linear dependent voltage/current sources, ( )kZ s  is the 

complex frequency domain impedance of linear passive 

element,  (ic)
kU s  is the source of initial condition in the 

complex frequency domain. Then the element equations 
can be expressed [1] 

 ( ) ( )( ) ( ) ( ) ( ) ( )u is s s s s K u K i f , (3) 

where ( ) ( )( ), ( )u is sK K  are matrices of the type (M, M), 

containing the complex frequency-domain representation 
of coefficients that define the linear voltage-current 
relationships for the circuit elements unambiguously; ( )sf  

is a vector of the type (M, 1), which contains the complex 
frequency-domain representation of the independent 
voltage and current sources parameters. 

Assembling Eqs. (1), (2), and (3), the sparse tableau 
equations are constituted. It is convenient to rewrite the 
sparse tableau equations as a single matrix equation [1] 

 ( ) ( ) ( )s s sT x w , (4) 

where ( )sT  is a square matrix of the type  

(2M+N1, 2M+N1), called the sparse tableau matrix;

( )sx
 
is a vector of the type (2M+N1, 1), which contains 

unknown variables ( )si , ( )su , ( )sv ; ( )sw is a vector of 

the type (2M+N1,1) containing zero vectors of 
appropriate dimensions and the vector ( )sf . 

After solving Eq. (4), the unknown variables are 
obtained, but only the first 2M elements of the vector ( )sx

represent the element currents and voltages. 

C. Description of Periodic Nonsinusoidal Input in the 

Time Domain and in the Frequency Domain 

Let ( )h t  is a periodic input, i.e. a periodic function of 

real variable t having the period > 0T  that satisfies the 
following conditions simultaneously [2], [3]: 

 for all < 0t : ( ) 0h t  ,  

 for all 0t  : ( )h t  must be piecewise continuous, 

 the magnitude of ( )h t  must be  ( ) < exph t t   for 

all positive t, where ,   are constants. 

Let ( )Th t  be a pulse, which is identical to the input 

( )h t  at the time interval 0,T , and zero out of the 

interval. Repeating the pulse ( )Th t  periodically in the 

time points nT , 0,1, 2, ...n  , the input ( )h t  is created 

and it can be expressed for 0t   as the sum of infinite 
number of time-shifted finite pulses [3] 

 

0

( ) ( )T
n

h t h t nT




  . (5) 

Applying the Laplace transform to the equation (5) 
together with the linearity property and time shifting 
property, the geometric series having a quotient 

 exp sT  is obtained 

  
0

( ) .exp( . )T
n

H s H s s nT




  , (6) 

where ( )TH s  is the Laplace transform of the pulse  

( )Th t . 

The geometric series converges for  exp <1sT , 

i.e. for  Re > 0s , therefore the Laplace transform ( )H s  

of the periodic input ( )h t  is [3] 

   ( ) ( ) 1 expTH s H s sT   . (7) 

D. Procedure for Finding Circuit Complete Response to 

Periodic Nonsinusoidal Input 

Let us consider the linear dynamic circuit with zero 
initial conditions, which is excited by a single periodic 
nonsinusoidal input. 

In the complex frequency domain, the circuit element 
currents and voltages have a form (solution of the sparse 
tableau equations): 

 
( )

( ) ( ), for 1,2,...,2
( )

k
k

P s
X s H s k M

Q s
  , (8) 

where ( ), ( )kP s Q s  are PkM -th degree, QM -th degree 

polynomials in s. 

The complex frequency domain representation ( )kX s , 

1,2,...,2k M , must have poles at the points, where 

 exp 1sT  , and ( ) 0Q s  . For simplicity, the 

following assumptions are made for ( )kX s , 

1,2,...,2k M : 
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 the degree of polynomials ( ),  1,2,...,2kP s k M , are 

less than that of the polynomials ( ), ( )kP s Q s , i.e. 

Pk QM M , 

 all real poles and real parts of all complex poles, 
which are the roots of ( ) 0Q s  , are negative so that 

the circuit is stable. 

In order to find the complete response of the circuit to 
the periodic nonsinusoidal input it is necessary [4]: 

 to find out the poles of ( )kX s , 1,2,...,2k M , at the 

points, where ( ) 0Q s  , i.e. to find the roots of the 

polynomial ( )Q s , 

 to evaluate (take the inverse Laplace transform of) 

( )kX s , 1,2,...,2k M , but only for roots of the 

polynomial ( )Q s ; this part is the transient part 

(trans)
( )kx t  of the complete response of the 

corresponding element current or voltage of given 
circuit for 0t  , 

 to take the inverse Laplace transform of the 
expression (8) where ( )H s  is replaced with the terms 

of ( )TH s  that act for < Tt , in order to obtain the 

complete response 
(total)

( )kx t  of the corresponding 

element current or voltage of given circuit for 
0 t T   (but not for t T ), 

 to subtract the transient response 
(trans)

( )kx t  from the 

complete response
(total)

( )kx t  of the corresponding 

element current or voltage of given circuit at the 

interval 0 t T  , in order to obtain the steady-state 

response 
(steady)

( )
kT

x t  of the corresponding element 

current or voltage of given circuit at the interval 

0 t T  , 

 
(steady) (total) (trans)

( ) ( ) ( ), 0 < <k kkT
x t x t x t t T  , (9) 

for 1,2,...,2k M . 

 the steady-state response repeats periodically, i.e. 

 
(steady) (steady)

0

( ) ( )k kT
n

x t x t nT




  , (10) 

therefore the complete response 
(total)

( )kx t  of the 

corresponding element current or voltage of given 

circuit for t T  can be found by addition of the 

transient response 
(trans)

( )kx t  and the steady-state 

response 
(steady)

( )kx t  of the corresponding element 

current or voltage of given circuit for t T , 

 
(total) (steady) (trans)

( ) ( ) ( ), >k k kx t x t x t t T  , (11) 

for 1,2,...,2k M . 

III. EXAMPLES OF FINDING COMPLETE RESPONSE  

OF CIRCUIT IN MATLAB 

All steps for finding the complete response of a 
dynamic circuit given above can be easily executed using 
the program composed and run in the MATLAB 
environment. 

The following text contains two representative 
examples of finding the circuit complete response to the 
periodic nonsinusoidal input. The outputs of the examples 
are graphical representations of the circuit responses. 

A. Complete Response of Series RL Circuit to Saw-Tooth 

Wave 

The series RL circuit (Fig. 1 – left) with the initial 
condition equal to zero is excited by the periodic saw-tooth 
wave shown in Fig. 1 (right), which is applied at time

0t  . The given input has the following parameters: the 
amplitude U and the period T . 

 

Fig. 1.  Series RL circuit (left) and saw-tooth wave input (right) – 
Example A. 

The aim is to find the complete response of the circuit 
to the given input using the program that is an 
implementation of the proposed procedure in the 
MATLAB environment. 

The first input data for the program are the parameters 
of the circuit elements. The circuit equations are 
constituted automatically using the sparse tableau 
analysis. 

 

Fig. 2.  MATLAB plot of the current versus time of the circuit shown  
in Fig. 1. 

After executing all program steps according to the 
proposed procedure in the MATLAB environment, the 
results of Example A are obtained. 

The corresponding graphical representations of all 
responses of the circuit are given for the following values 

of the circuit parameters: R  20 , L  0.1 H, U  50 V, 
T  0.02 s, and they are depicted in Figs.2, 3, and 4. 
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Fig. 3.  MATLAB plot of resistor voltage versus time of the circuit 
shown in Fig. 1. 

In Fig. 2, the transient, steady-state and complete 
response of the current flowing through the given circuit is 
shown. In Figs. 3 and 4, the responses of the voltage 
across the resistor and the voltage across the inductor of 
the given circuit are depicted. 

 

Fig. 4.  MATLAB plot of inductor voltage versus time of the circuit 

shown in Fig. 1. 

All plots indicate that after the first period the influence 
of the transient responses can be considered as negligible 
for practical purposes. 

B. Complete Response of Second-Order Circuit to Square 

Wave 

Figure 5 (left) shows a second-order circuit with the 
zero initial conditions. The input to the circuit is the 
voltage of the voltage source that is the periodic square 
wave having the amplitude U and the period T, which is 
applied at time 0t  . The aim is to find the complete 
response of the given circuit. 

After running the program the results of Example B are 
obtained. The corresponding graphical representations of 
all element currents and voltages are given for the 
following values of the circuit parameters: R  100 , 
L  12 mH, C   2 μF, T = 0.008 s, U = 25 V. They are 
shown in Figs. 6 to 10. 

 

 

 

 

Fig. 5.  The second-order circuit (left) and square wave input (right) – 

Example B. 

In the problem of Example B the numeric values of the 
transient responses are in the range from 10−3 to 10−6 of 
the corresponding units and values of the complete and 
steady-state responses in the range from 10−1 to 10+2 of the 
corresponding units. Due to this, all plots shown in Figs. 6 
to 10 are created with y-axes on both left and right sides of 
the graph. The two y-axes plots enable to display both 
data sets in one graph even though relative values of the 
data belong to quite different value ranges. 

 

Fig. 6.  MATLAB plot of the inductor current versus time of the circuit 

shown in Fig. 5. 

In Fig. 6, the current flowing through the inductor is 
depicted. The plot shows the transient, steady-state, and 
complete responses. It is evident that the transient 
response of the current obtains very small values, thus the 
steady-state response is equal to the complete response of 
the inductor current and the steady-state values of the 
inductor current is 0 A and about 0.25 A. 

 

Fig. 7.  MATLAB plot of the capacitor current versus time of the circuit 

shown in Fig. 5. 

In Fig. 7, the current flowing through the capacitor is 
depicted. The plot shows that steady-state value of the 
capacitor current is 0 A (at steady state the capacitor acts 
as an open circuit). 
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Fig. 8.  MATLAB plot of the resistor current versus time of the circuit 

shown in Fig. 5. 

In Fig. 8, the transient, steady-state, and complete 
responses of the current flowing through the resistor are 
drawn. The plot shows that steady-state values of the 
resistor current are 0 A and about 0.25 A (at steady state 
the inductor acts as a short circuit, the capacitor acts as an 
open circuit, thus the same current flows through the 
resistor and inductor). 

 

Fig. 9.  MATLAB plot of the inductor and capacitor voltage versus time 

of the circuit shown in Fig. 5. 

In Fig. 9, the voltage across the inductor and capacitor 
is drawn (parallel connection). The plot shows that the 
steady-state value of the inductor voltage is 0 A (at steady 
state the inductor acts as a short circuit). 

In Fig. 10, the voltage across the resistor is depicted. 

It is evident that all responses of the circuit given in 
Example B are oscillatory-type ones with decaying 
magnitude and the frequency of oscillation that depends 
on the damped resonant frequency. 

 

 

Fig. 10.  MATLAB plot of the resistor voltage versus time of the circuit 

shown in Fig. 5. 

IV. CONCLUSIONS 

The procedure for finding complete, transient, and 
steady-state responses of a linear circuit to the periodic 
nonsinusoidal input was proposed. The description of the 
circuit was done in the complex frequency domain using 
the sparse tableau analysis, thus instead of the differential 
equations solution, only the algebraic ones were solved. 

The solution was done by running the program based on 
the proposed procedure composed in the MATLAB 
environment. Such technique has many advantages over 
the calculus made by hand. The first of all is the fact that it 
saves a lot of time and effort, because the user has not to 
solve the set of algebraic equations. The second advantage 
is the fact that he has not to take the direct and inverse 
Laplace transform. The third advantage consists in fact, 
that the program provides the graphical representation of 
the complete, transient, and steady-state responses for all 
element currents and voltages. 

Since the MATLAB environment is very user-friendly, 
the user has not to spend time in learning software but he 
can spend time in learning the fundamental principles of a 
solved problem. 
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