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Abstract — This contribution deals with the modal 

analysis of ACSR conductor using the finite element method 

(FEM) and experimental measurements of eigenfrequencies. 

In numerical experiments for the modelling of the conductor 

the material properties of the chosen conductor cross-

section are homogenized by the Representative Volume 

Element (RVE) method. The spatial modal analysis of the 

power line is carried out by means of our new 3D FGM 

beam finite element and by standard beam finite element of 

the commercial software ANSYS. Experimental 

measurements are also carried out for verification of the 

numerical calculation accuracy. 
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analysis, experimental measurements 

I. INTRODUCTION 

Vibration of overhead power lines is a very dangerous 
problem because it can cause collapse of overhead power 
lines or collapse of the whole transmission system. The 
overhead power lines are exposed to dynamic loads (air 
flow, ice-shedding, etc.) in addition to the static ones. 
From the mechanical point of view the conductor is a 3D 
system, so it can vibrate in longitudinal, horizontal and 
vertical directions.  The torsional vibrations are possible 
as well. For calculation of eigenfrequencies and 
eigenmodes the numerical methods are the most effective, 
over all the finite element method. For the modal analysis 
the beam finite element is preferable. 

The material of the conductor is inhomogeneous, 
therefore simplified models obtained by homogenization 
of material properties are used [1, 2, 3]. The 
heterogeneous cross-sections of several ACSR conductors 
are shown in Fig.1. 

 

Fig. 1.  Construction of ACSR conductor. 

Results of the modal analysis are obtained using the 
commercial finite element software ANSYS and by a new 
3D finite element [4]. An experimental measurement was 
done to verify and to compare the effectiveness and 
accuracy of each numerical calculation. 

II. HOMOGENIZATION OF MATERIAL PROPERTIES 

One important goal of mechanics of heterogeneous 
materials is to derive their effective properties from the 
knowledge of the constitutive laws and complex micro-
structural behaviour of their components. 

The methods based on the homogenization theory (e.g. 
the mixture rules [5]) have been designed and successfully 
applied to determine the effective material properties of 
heterogeneous materials from the corresponding material 
behaviour of the constituents (and of the interfaces 
between them) and from the geometrical arrangement of 
the phases. In this context, the microstructure of the 
material under consideration is basically taken into 
account by the Representative Volume Element (RVE). 

The homogenization techniques derived at our 
department (Department of Applied Mechanics and 
Mechatronics) for modelling the Functionally Graded 
Material (FGM) [1, 2] can also be used for 
homogenization of the ACSR conductors. In case of the 
conductor, the material properties vary layer-wise in the 
radial direction (the longitudinal variation is not assumed). 

The effective homogenized material properties (electric 
conductance, thermal conductance, thermal expansion, 
stiffness) are calculated from condition, that the relevant 
material property of the cross-section with real 
construction (Fig. 2) is equal to the material property of 
the homogenized cross-section. 

 

Fig. 2.  Conductor cross-section. 

The real cross-section parameters of the ACSR 
conductors are: Ri is pitch circle of the k

th
 layer, di is wire 

diameter, φi is the angle of circumferential position of the 
wire, zi and yi are the distances of the wire from the centre 
of the conductor cross-section. These distances of each 
wire can be calculated as follows: 
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Then the quadratic moment of the i
th
 wire cross-sectional 

area 4/2
ii dA   according the axis y and according the 

axis z can be calculated by equations [1]: 

The polar moment of the wire cross-sectional area to 
origin of the coordinate system x, y is: 

Since the Young’s modulus multiplied by the cross-
sectional area defines the axial stiffness and multiplied by 
the quadratic moment of the cross-section area defines the 
bending stiffness, we have to distinguish homogenized 

effective Young’s modulus for axial loading 
NH

L
E and 

homogenized effective Young’s modulus for bending
HyM

L
E  and 

HzM

L
E . 

We assume that the maximum and minimum elasticity 
moduli for lateral and transversal bending can be 
calculated by equations: 
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where nFe is the number of steel wires and nAl is the 
number of aluminium wires. The maximum elasticity 
modulus represents the case, when all wires are fixed 
together (e.g. after several years of lifetime), and the 
minimum elasticity modulus represents the case, when 
wires can slide over each other. In practice the effective 
elasticity modulus for lateral and transversal bending is 
assumed as average value of the maximum and minimum 
elasticity moduli [4]: 
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The effective elasticity modulus for axial loading is: 
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Here, Ei is the elasticity modulus of the i
th

 wire, and n is 
number of the wires. 

The effective elasticity modulus for lateral and 
transversal shears 
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Where  iii /EG  12  is the shear modulus of the i
th
 

wire, 



n

i

iAA
1

 is the cross-sectional area of the whole 

real cross-section and i  is its Poisson’s ratio. Again, 

sm
i,yk  and 

sm

yk   are the shear correction factors for the i
th
 

wire and the whole cross-section, respectively. These 
constants have to be calculated by a special method [4]. 

The effective elasticity modulus for torsion is: 
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The effective mass density for axial beam vibration is: 
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and the effective mass density for torsional vibration is: 
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where, i  is the mass density of the i
th
 wire. 

III. 3D FGM BEAM FINITE ELEMENT EQUATIONS 

Let us consider a 3D straight finite beam element 
(Timoshenko beam theory and Saint-Venant torsion 
theory) of a doubly symmetric cross-section. The nodal 
degrees of freedom at the node i are: the displacements ui, 
vi, wi in the local axis direction x, y, z, and the cross-

sectional area rotations – iziyix ,,, ,,  . The degrees of 

freedom at the node j are denoted in a similar manner. The 
internal forces at the node i are:  axial force Ni, transversal 
forces Ry,i and Rz,i,  bending moments My,i and Mz,i, and 
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torsion moment Mx,i. Establishing of the local 3D FGM beam finite element equations is presented in [4]: 

 

In (13), the terms Bi,j contain the linear and linearized 
geometric non-linear stiffness terms – containing the axial 
force effect on the flexural beam stiffness matrix K and 
consistent mass matrix M [4]: 

MKB 2  (14) 

where  is the natural frequency. The shear correction is 
accounted as well. The global stiffness matrix of the beam 
structures can be established by classical methods. 
Establishing of the local and global stiffness matrices as 
well as the whole solution procedure were coded by the 
software MATHEMATICA [12]. 

IV. NUMERICAL SIMULATIONS AND EXPERIMENTAL 

MEASUREMENTS 

For the numerical simulations and experimental 
measurements the single power line with the span length  
L = 19.9 m and the height difference between the points of 
attachment yh = 0.8 m has been considered (Fig. 3). In this 
case the maximum deflection of the power line [6, 7] is 
minimal and therefore was not calculated, because the 
span is small. The constant tensile force in the conductor 
for each numerical calculations and experimental 
measurements were: FH1 = 1.65 kN, FH2 = 4.75 kN and 
FH3 = 6.68 kN. 

 

Fig. 3.  Model of overhead power line for modal analysis. 

A symmetric conductor marked as AlFe 42/7 which is 
constructed from 1 steel wire in the centre of the 
conductor and 6 aluminium wires (see Fig. 4) has been 
used. The diameter of the steel wire is dFe = 3 mm and the 
diameter of the aluminium wires is dAl = 3 mm. The rated 
tensile strength (RTS) of the chosen conductor is  
FRTS = 15.27 kN [8]. 

 

Fig. 4.  Cross-section of the used ACSR conductor. 

Material properties of the material from which the 
conductor is made are [9, 10]: 

• Steel: 

-  elasticity modulus EFe = 207000 MPa,  

-  Poisson’s ratio Fe = 0.28,  

-  mass density Fe = 7780 kg.m
-3

;  

• Aluminium: 

-  elasticity modulus EAl = 69000 MPa,  

-  Poisson’s ratio Al = 0.33,  

-  mass density Al = 2703 kg.m
-3

.  

For numerical simulations a simplified model was used. 
For simplifying the model of the ACSR conductor the 
homogenized material properties are calculated [1, 2, 3].  

The effective cross-sections of the conductor parts are: 
AFe = 7.07 mm

2
, AAl = 42.41 mm

2
 and the effective cross-

sectional area of the whole conductor is A = 49.48 mm
2
. 

The effective quadratic moments of the conductor cross-
sectional area are: Iz = Iy = 218.68 mm

4
. The effective 

circular cross-section of the conductor is constant with 
diameter def = 7.94 mm. The effective material properties 
of the used conductor are: 
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where NH

LE is the elastic modulus for tension, 

HzM

L

HyM

L EE ,   are the elastic moduli for bending  around 

axis y and z, respectively. H

zL

H

yL GG ,  are the effective shear 

moduli,  xG
HxM

L  is the effective elasticity modulus for 

torsion, NH

L is the effective mass density for axial beam 

vibration, HxM

L is the effective mass density for torsional 

vibration and NH

L  is the effective Poisson’s ratio. These 

calculated effective material properties have been used in 
the modal analyses of the single power lines. The first 
three flexural eigenfrequencies f [Hz] in the plane xy 
(vertical) and the first three flexural eigenfrequenciesf 
[Hz] in the plane xz (horizontal) have been found with a 
mesh 200 of BEAM188 elements of the FEM program 
ANSYS [11]. The same problem has been solved using 
the new 3D beam finite element (3D NFE) for the modal 
analysis of composite beam structures [4] with a mesh 80 
of 3D FGM elements (the calculation is performed using 
the software MATHEMATICA). 

 

Fig. 5.  Piezoelectric accelerometer attached on the conductor. 

 

Two bolted strain clamps were used for fixing the 
conductor on two ends of the span; two IEPE piezoelectric 
accelerometers with the range of   50 g (Fig. 5) were 
used for experimental modal analyses to determine the 
flexural eigenfrequencies. For scanning the signals from 
the accelerometers 2 way oscilloscope with USB 
connection to the PC was used. The range of the 
oscilloscope is 20 MHz. The tension in the conductor is 
measured with one load cell with sensing range  
Fmax = 10 kN (Fig 6), which is close to the conductor 
attachment point. 

 

Fig. 6.  Attaching of the load cell to sensing the axial force in conductor. 

The data from the accelerometers placed on the 
conductor is shown in Fig. 7. 

To obtain the frequency spectrum (Fig. 8) the Fast 
Fourier Transformation (FFT) of the measured data was 
realized by software LabView [13]. The flexural mode 
shapes were evaluated using software ANSYS. The results 
of numerical analyses and experimental measurements are 
presented in Tab. 1-3. First three flexural eigenfrequencies 
in horizontal and three flexural eigenfrequencies in 
vertical plane were investigated. 

 

 

Fig. 7.  Measured data of acceleration of the overhead ACSR conductor. 
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Fig. 8.  Measured flexural eigenfrequencies of the used ACSR conductor for the tension FH = 6.68kN at times t = 3s and t = 7 s. 

TABLE I.  
FIRST THREE HORIZONTAL AND VERTICAL MEASURED AND NUMERICALLY CALCULATED EIGENFREQUENCIES OF THE USED ACSR POWER LINE  

AT THE TENSION FH = 1,65KN 

f [Hz] fmeas [Hz] fans [Hz] f3D [Hz] ANS [%] 3D [%] 

1
st
 

horizontal 2,23 2,49 2,47 11,66 10,74 

vertical 2,38 2,54 2,58 6,72 8,34 

2
nd

 
horizontal 4,85 4,98 4,94 2,68 1,85 

vertical 4,91 4,98 4,94 1,43 0,61 

3
rd

 
horizontal 7,23 7,47 7,41 3,32 2,51 

vertical 7,24 7,47 7,42 3,18 2,44 

TABLE II.  
FIRST THREE HORIZONTAL AND VERTICAL MEASURED AND NUMERICALLY CALCULATED EIGENFREQUENCIES OF THE USED ACSR POWER LINE  

AT THE TENSION FH = 4,75 KN 

f [Hz] fmeas [Hz] fans [Hz] f3D [Hz] ANS [%] 3D [%] 

1
st
 

horizontal 3,88 4,31 4,20 11,08 8,34 

vertical 3,97 4,32 4,21 8,82 6,08 

2
nd

 
horizontal 8,58 8,63 8,41 0,58 -2,01 

vertical 8,73 8,63 8,41 -1,15 -3,69 

3
rd

 
horizontal 12,48 12,95 12,61 3,77 1,05 

vertical 12,64 12,95 12,61 2,45 -0,21 

TABLE III.  
FIRST THREE HORIZONTAL AND VERTICAL MEASURED AND NUMERICALLY CALCULATED EIGENFREQUENCIES OF THE USED ACSR POWER LINE  

AT THE TENSION FH = 6,68 KN 

f [Hz] fmeas [Hz] fans [Hz] f3D [Hz] ANS [%] 3D [%] 

1
st
 

horizontal 4,51 5,13 4,98 13,75 10,46 

vertical 4,72 5,13 4,99 8,69 5,62 

2
nd

 
horizontal 9,98 10,25 9,96 2,71 -0,16 

vertical 10,23 10,25 9,96 0,20 -2,60 

3
rd

 
horizontal 14,67 15,35 14,95 4,64 1,89 

vertical 14,97 15,38 14,95 2,74 -0,15 

1
st
flexural 

2
nd

flexural 

3
rd

flexural 
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a) 2
nd

 eigenmode in vertical plane 

 

b) 3
rd

 eigenmode in horizontal plane 

 

c) 3
rd

 eigenmode in vertical plane 

Fig. 8.  Eigenmodes of the used ACSR conductor for the tension FH = 6.68 kN. 

 

V. CONCLUSION 

In the presented contribution the numerical simulation 
and experimental measurements of the selected ACSR 
conductor is presented. The numerical simulations were 
done by the commercial software ANSYS and by our new  
3D FGM beam finite element which was implemented in 
the software MATHEMATICA. 

From the results shown in Tab. 1–3 it is obvious that 
the differences between the numerical simulations and 
experimental measurements are very small. These results 
confirm the correctness of our procedure for 
homogenising the material properties of the ACSR 
conductor as well as the efficiency and accuracy of a new 
beam finite element for analysis of the composite 
structures. 
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