Transactions on Electrical Engineering, Vol. 5 (2016), No. 4

116

Numerical Analysis and Experimental
Verification of Eigenfrequencies of Overhead
ACSR Conductor

Justin Murin ?, Juraj Hrabovsky Y Roman Gogola Y Viadimir Goga Y and Frantisek Janicek ?

Y'slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology,
Department of Applied Mechanics and Mechatronics, Bratislava, Slovakia, e-mail: justin.murin@stuba.sk
2 Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology,
Department of Electrical Power Engineering, Bratislava, Slovakia, e-mail: frantisek.janicek@stuba.sk

Abstract — This contribution deals with the modal
analysis of ACSR conductor using the finite element method
(FEM) and experimental measurements of eigenfrequencies.
In numerical experiments for the modelling of the conductor
the material properties of the chosen conductor cross-
section are homogenized by the Representative Volume
Element (RVE) method. The spatial modal analysis of the
power line is carried out by means of our new 3D FGM
beam finite element and by standard beam finite element of
the commercial software  ANSYS.  Experimental
measurements are also carried out for verification of the
numerical calculation accuracy.
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I. INTRODUCTION

Vibration of overhead power lines is a very dangerous
problem because it can cause collapse of overhead power
lines or collapse of the whole transmission system. The
overhead power lines are exposed to dynamic loads (air
flow, ice-shedding, etc.) in addition to the static ones.
From the mechanical point of view the conductor is a 3D
system, so it can vibrate in longitudinal, horizontal and
vertical directions. The torsional vibrations are possible
as well. For calculation of eigenfrequencies and
eigenmodes the numerical methods are the most effective,
over all the finite element method. For the modal analysis
the beam finite element is preferable.

The material of the conductor is inhomogeneous,
therefore simplified models obtained by homogenization
of material properties are used [1, 2, 3]. The
heterogeneous cross-sections of several ACSR conductors
are shown in Fig.1.

Fig. 1. Construction of ACSR conductor.

Results of the modal analysis are obtained using the
commercial finite element software ANSYS and by a new
3D finite element [4]. An experimental measurement was
done to verify and to compare the effectiveness and
accuracy of each numerical calculation.
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Il. HOMOGENIZATION OF MATERIAL PROPERTIES

One important goal of mechanics of heterogeneous
materials is to derive their effective properties from the
knowledge of the constitutive laws and complex micro-
structural behaviour of their components.

The methods based on the homogenization theory (e.g.
the mixture rules [5]) have been designed and successfully
applied to determine the effective material properties of
heterogeneous materials from the corresponding material
behaviour of the constituents (and of the interfaces
between them) and from the geometrical arrangement of
the phases. In this context, the microstructure of the
material under consideration is basically taken into
account by the Representative VVolume Element (RVE).

The homogenization techniques derived at our
department (Department of Applied Mechanics and
Mechatronics) for modelling the Functionally Graded
Material (FGM) [1, 2] can also be used for
homogenization of the ACSR conductors. In case of the
conductor, the material properties vary layer-wise in the
radial direction (the longitudinal variation is not assumed).

The effective homogenized material properties (electric
conductance, thermal conductance, thermal expansion,
stiffness) are calculated from condition, that the relevant
material property of the cross-section with real
construction (Fig. 2) is equal to the material property of
the homogenized cross-section.

Fig. 2. Conductor cross-section.

The real cross-section parameters of the ACSR
conductors are: R; is pitch circle of the K" layer, d; is wire
diameter, ¢; is the angle of circumferential position of the
wire, z; and y; are the distances of the wire from the centre
of the conductor cross-section. These distances of each
wire can be calculated as follows:
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The polar moment of the wire cross-sectional area to
origin of the coordinate system x, y is:

L =1, +1; 3)

Since the Young’s modulus multiplied by the cross-
sectional area defines the axial stiffness and multiplied by
the quadratic moment of the cross-section area defines the
bending stiffness, we have to distinguish homogenized

effective Young’s modulus for axial loading E™ and
homogenized effective Young’s modulus for bending
E"" and EM" .

L

We assume that the maximum and minimum elasticity
moduli for lateral and transversal bending can be
calculated by equations:
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where ng, is the number of steel wires and ny is the
number of aluminium wires. The maximum elasticity
modulus represents the case, when all wires are fixed
together (e.g. after several years of lifetime), and the
minimum elasticity modulus represents the case, when
wires can slide over each other. In practice the effective
elasticity modulus for lateral and transversal bending is
assumed as average value of the maximum and minimum
elasticity moduli [4]:

M, H M, H
" _ Eimax * Eimin (6)
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The effective elasticity modulus for axial loading is:
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Here, E; is the elasticity modulus of the i"" wire, and n is
number of the wires.

The effective elasticity modulus for lateral and
transversal shears
n n
D2 KIGIA D KiGiA
GH _ = H_ ia ©)
S N L

Where G; =E; /2(1+ vi) is the shear modulus of the i"

n
wire, A=>" A is the cross-sectional area of the whole
i=1
real cross-section and v; is its Poisson’s ratio. Again,
kyi and kJ" are the shear correction factors for the i"

wire and the whole cross-section, respectively. These
constants have to be calculated by a special method [4].

The effective elasticity modulus for torsion is:
n
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The effective mass density for axial beam vibration is:
z PiA
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and the effective mass density for torsional vibration is:

(12)

where, p; is the mass density of the i wire.

111. 3D FGM BEAM FINITE ELEMENT EQUATIONS

Let us consider a 3D straight finite beam element
(Timoshenko beam theory and Saint-Venant torsion
theory) of a doubly symmetric cross-section. The nodal
degrees of freedom at the node i are: the displacements u;,
v, W; in the local axis direction x, y, z, and the cross-

sectional area rotations — ¢,;,¢,;,¢,;. The degrees of
freedom at the node j are denoted in a similar manner. The

internal forces at the node i are: axial force N;, transversal
forces Ry; and R,;, bending moments My; and M,;, and
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torsion moment M, ;. Establishing of the local 3D FGM
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In (13), the terms B;; contain the linear and linearized
geometric non-linear stiffness terms — containing the axial
force effect on the flexural beam stiffness matrix K and
consistent mass matrix M [4]:

B=K-w’M (14)
where o is the natural frequency. The shear correction is
accounted as well. The global stiffness matrix of the beam
structures can be established by classical methods.
Establishing of the local and global stiffness matrices as
well as the whole solution procedure were coded by the
software MATHEMATICA [12].

IV. NUMERICAL SIMULATIONS AND EXPERIMENTAL
MEASUREMENTS

For the numerical simulations and experimental
measurements the single power line with the span length
L =19.9 m and the height difference between the points of
attachment y,, = 0.8 m has been considered (Fig. 3). In this
case the maximum deflection of the power line [6, 7] is
minimal and therefore was not calculated, because the
span is small. The constant tensile force in the conductor
for each numerical calculations and experimental
measurements were: Fy; = 1.65 kN, Fy, = 4.75 kN and
FHS = 6.68 kN.
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Fig. 3. Model of overhead power line for modal analysis.

A symmetric conductor marked as AlFe 42/7 which is
constructed from 1 steel wire in the centre of the
conductor and 6 aluminium wires (see Fig. 4) has been
used. The diameter of the steel wire is de. = 3 mm and the
diameter of the aluminium wires is dy = 3 mm. The rated
tensile strength (RTS) of the chosen conductor is
FRTS =15.27 kN [8]
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beam finite element equations is presented in [4]:
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Fig. 4. Cross-section of the used ACSR conductor.

Material properties of the material from which the
conductor is made are [9, 10]:

. Steel:
elasticity modulus Eg, = 207000 MPa,

- Poisson’s ratio Vg = 0.28,

- mass density pe. = 7780 kg.m®;
. Aluminium:

- elasticity modulus E4 = 69000 MPa,

- Poisson’s ratio v = 0.33,

- mass density pu = 2703 kg.m™®,

For numerical simulations a simplified model was used.
For simplifying the model of the ACSR conductor the
homogenized material properties are calculated [1, 2, 3].

The effective cross-sections of the conductor parts are:
Are = 7.07 mm?, Ay = 42.41 mm? and the effective cross-
sectional area of the whole conductor is A = 49.48 mm?.
The effective quadratic moments of the conductor cross-
sectional area are: I, = I, = 218.68 mm®*. The effective
circular cross-section of the conductor is constant with
diameter des = 7.94 mm. The effective material properties
of the used conductor are:

ENH =88714.29 MPa
EVN = EMH = 40704.43MPa
G =G/! =34120.91 MPa

Y Z

G, " (x)= 27503.49 MPa
o™ =3460.49 kgm™®
oo = 2795.31kg.m
vt =0.323
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where E""is the elastic modulus for tension,

E™" EMM are the elastic moduli for bending around
axis y and z, respectively. G”y , GL”Z are the effective shear

moduli, G!"*"(x) is the effective elasticity modulus for
torsion, p" is the effective mass density for axial beam
vibration, p"x" is the effective mass density for torsional

vibration and v"" is the effective Poisson’s ratio. These

calculated effective material properties have been used in
the modal analyses of the single power lines. The first
three flexural eigenfrequencies f [Hz] in the plane xy
(vertical) and the first three flexural eigenfrequenciesf
[Hz] in the plane xz (horizontal) have been found with a
mesh 200 of BEAM188 elements of the FEM program
ANSYS [11]. The same problem has been solved using
the new 3D beam finite element (3D NFE) for the modal
analysis of composite beam structures [4] with a mesh 80
of 3D FGM elements (the calculation is performed using
the software MATHEMATICA).

w

Fig. 5. Piezoelectric accelerometer attached on the conductor.

Two bolted strain clamps were used for fixing the
conductor on two ends of the span; two IEPE piezoelectric
accelerometers with the range of +50¢ (Fig. 5) were
used for experimental modal analyses to determine the
flexural eigenfrequencies. For scanning the signals from
the accelerometers 2 way oscilloscope with USB
connection to the PC was used. The range of the
oscilloscope is 20 MHz. The tension in the conductor is
measured with one load cell with sensing range
Fmax = 10 kN (Fig 6), which is close to the conductor
attachment point.

Fig. 6. Attaching of the load cell to sensing the axial force in conductor.

The data from the accelerometers placed on the
conductor is shown in Fig. 7.

To obtain the frequency spectrum (Fig. 8) the Fast
Fourier Transformation (FFT) of the measured data was
realized by software LabView [13]. The flexural mode
shapes were evaluated using software ANSYS. The results
of numerical analyses and experimental measurements are
presented in Tab. 1-3. First three flexural eigenfrequencies
in horizontal and three flexural eigenfrequencies in
vertical plane were investigated.

Acceleration [g]
L

I I I i |

5 6 7 8 9 10

Time [s]

Fig. 7. Measured data of acceleration of the overhead ACSR conductor.
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Fig. 8. Measured flexural eigenfrequencies of the used ACSR conductor for the tension F,; = 6.68kN at timest=3sand t=7s.

TABLE I.
FIRST THREE HORIZONTAL AND VERTICAL MEASURED AND NUMERICALLY CALCULATED EIGENFREQUENCIES OF THE USED ACSR POWER LINE

AT THE TENSION Fy = 1,65kKN

f [Hz] freas [HZ] | fans [HZl | fio[HZ] | Aans[%] | Asp[%]
1 horizontal 2,23 2,49 2,47 11,66 10,74
vertical 2,38 2,54 2,58 6,72 8,34
ond horizontal 4,85 4,98 4,94 2,68 1,85
vertical 491 4,98 4,94 1,43 0,61
rd horizontal 7,23 7,47 7,41 3,32 2,51
3 vertical 7,24 7,47 7,42 3,18 2,44

TABLE Il.

FIRST THREE HORIZONTAL AND VERTICAL MEASURED AND NUMERICALLY CALCULATED EIGENFREQUENCIES OF THE USED ACSR POWER LINE
AT THE TENSION Fy =4,75KN

f[Hz] fneas [HZ] fans [HZ] fap [Hz] Anns [%0] Asp [%0]

L= horizontal 3,88 431 4,20 11,08 8,34
vertical 3,97 4,32 4,21 8,82 6,08

ond horizontal 8,58 8,63 8,41 0,58 -2,01
vertical 8,73 8,63 8,41 -1,15 -3,69

rd horizontal 12,48 12,95 12,61 3,77 1,05
3 vertical 12,64 12,95 12,61 2,45 -0,21

TABLE Ill.

FIRST THREE HORIZONTAL AND VERTICAL MEASURED AND NUMERICALLY CALCULATED EIGENFREQUENCIES OF THE USED ACSR POWER LINE
AT THE TENSION Fyy = 6,68 KN

f[Hz] fieas [HZ] | fans [HZ] fap [HZ] Anns [%0] Asp [%0]
1= horizontal 451 5,13 4,98 13,75 10,46
vertical 4,72 5,13 4,99 8,69 5,62
nd horizontal 9,98 10,25 9,96 2,71 -0,16
2 vertical 10,23 10,25 9,96 0,20 -2,60
rd horizontal 14,67 15,35 14,95 4,64 1,89
3 vertical 14,97 15,38 14,95 2,74 -0,15
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c) 3" eigenmode in vertical plane

Fig. 8. Eigenmodes of the used ACSR conductor for the tension Fy = 6.68 kN.

V. CONCLUSION

In the presented contribution the numerical simulation
and experimental measurements of the selected ACSR
conductor is presented. The numerical simulations were
done by the commercial software ANSYS and by our new
3D FGM beam finite element which was implemented in
the software MATHEMATICA.

From the results shown in Tab. 1-3 it is obvious that
the differences between the numerical simulations and
experimental measurements are very small. These results
confirm the correctness of our procedure for
homogenising the material properties of the ACSR
conductor as well as the efficiency and accuracy of a new
beam finite element for analysis of the composite
structures.
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