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Abstract — An overhead power line is a structure used in 

the electric power system to transmit electrical energy. The 

performance of overhead power lines depends on their 

parameters. There are four basic electrical parameters of 

power lines: resistance, inductance, capacitance, and shut 

conductance. The paper focuses on the calculation of the 

series impedance of overhead lines (resistance and 

inductance) by three different methods (Carsonʹs method, 

Rüdenbergʹs method and the theory of complex penetration 

depth) considering the impact of the ground return path. 

There is also the comparison of these methods and their 

application on models of real power lines of different voltage 

levels provided in this paper. 

Keywords — electrical parameters of power lines, resistance, 

inductance, series impedance, Carsonʹs method, ground return, 

complex penetration depth. 

 

I. INTRODUCTION 

In standard calculations of electrical parameters of power 

lines there are some simplifications, such as current flows 

trough phase conductors are symmetric, in the case of a 

dual-system power line current flows in the first system are 

identical to current flows of the second system, mean 

distances between conductors are considered. The impact 

of the ground on the series impedance of power lines is not 

considered [1], [2]. The purpose of these common methods 

is to determine the one operating parameter (the mean 

inductance) which replaces the magnetic effect of all 

conductors of the system on the particular conductor. 

Distances between conductors are different in practice, 

so the electrical parameters of each conductor have 

different values. The calculation methods presented in this 

article are aimed at expressing the relationships between 

conductors of the one system, but also between conductors 

of several systems. The result of the individual parameter 

calculation is not the one value, but the matrix of 

parameters. The dimensions of the matrix, rows and 

columns indicate the number of conductors in the system. 

There are the self-parameters of conductors placed on the 

matrix diagonal and the relations between conductors are 

expressed apart from the diagonal [3]. 

The purpose of presented methods for calculating the 

series impedance of power lines is to create a simple way 

to determine both the individual and the mutual parameters 

of conductors with required precision for a wide range of 

geometric arrangement, environment, materials, and so on. 

There are three basic concepts (Carsonʹs, Rüdenbergʹs, and 

Deriʹs methods) for calculating the series impedance of 

power lines with consideration of the impact of the ground. 

These methods differ from one another according to 

configuration of conductors and properties of the ground. 

All theories assume that the biggest density of the 

alternating current in the ground is directly below the line 

and quickly drops to the sides as well as to the depth. All 

three theories consider that the ground is a steady current 

conductor, which has its self-parameters, thus its series 

impedance is not equal to zero [3], [4].  

 

II. RÜDENBERG'S CONCEPTION 

The Rüdenberg's conception for calculating the self and 

mutual series impedance of conductors is considered to be 

the simplest mathematical one, based on several 

assumptions in [3]. This method replaces the effect of the 

ground on the resistance and inductance of conductors by 

fictitious conductors according to Fig. 1. The configuration 

of n  conductors and the one ground is replaced by n  real 

conductors and n  fictitious conductors. The theory 

considers that the currents flowing through the fictitious 

conductors have opposite polarity as currents flowing 

through the real conductors. The distance between 

conductors and their images is equal to 
gD . 

 
Fig. 1.  Model of two conductors and their images at a distance 

g
D . 

 

The size of the 
gD  is not dependent on the height of the 

conductor above the ground, usually it is 
g

 << Dh . The 

value gD  is given by relation [3]: 
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where 

ρ  is the ground resistivity  Ωm , 

f  is the frequency ( )Hz . 

According to the Rüdenberg's theory the self impedance 

kk
Z  of the conductor k  can be determined as [3]: 

 1

kk

0

gkkkkkkk
Ωmln
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jj 

rξ

Dμ
ωRRLωRZ

g
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where 

kk
R  is the self resistance of the conductor k   1Ωm

, 

k
R  

 

 

 

is the AC resistance of the conductor k  without 

considering the influence of the ground 

according to [4] (it may include the influence of 

temperature, skin effect, twisting ropes, and sag) 

 1Ωm , 

g
R  is the ground resistance  1Ωm , specified in [4], 

kk
L

 
is the self-inductance of the conductor k  

 1Hm , 

k
ξ

 
 

 

is the factor that represents the skin effect and 

magnetic properties of the conductor k  material 

  , 

k
r  is the radius of the conductor k   m , 

ω  is the angular frequency  1s  , 

0
μ

 
 

is the vacuum permeability  1Hm
, 

17

0
Hm104π μ . 

Contribution to the series impedance of the conductor k  

from the conductor m  and its corresponding fictitious 

conductor m   (the mutual series impedance 
km

Z  between 

conductors k  and m ) is the relation [3]: 

 1


 Ωmln
π2

jj
km
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gkmkmkm
a

aμ
ωRLωRZ , (3) 

    m
km

2

mkgkm

2xhhDa  , (4) 

mkkm
RR  , 

mkkm
LL  , 

mkkm
ZZ  , 

where 

km
R

 
 

is the mutual resistance between the conductors 

k  and m   1Ωm
, 

km
L

 
 

 

 

is the mutual inductance between the conductors 

k  and m , the contribution to the conductor k  

inductance from the conductor m  and its 

corresponding fictitious conductor m   1Hm
, 

km
a

 
 

 

is the distance between the conductor k  and the 

image of the conductor m   m  according to 

Fig. 1, 

km
a

 
 

is the distance between the conductor k  and the 

conductor m   m  according to Fig. 1, 

k
h

 
 

is the height of the conductor k  over the ground

 m , 

m
h

 
 

is the height of the conductor m  over the ground 

 m , 

km
x

 
 

is the horizontal distance between the 

conductors k  and m   m . 

 

III. FULL AND SIMPLIFIED CARSON'S METHOD 

The theory was published in 1926 and is still a standard 

for calculating the series impedance of power lines. Carson 

assumes that the ground is a uniform, flat, solid and infinite 

surface with the constant resistivity [5]. The method 

expresses the series impedance of power lines as an 

improper integral, which can be developed into infinite 

series [6] – [9]. For practical purposes, it is sufficient to 

consider the finite number of elements in the series. The 

Carson's theory includes the influence of the ground on the 

series impedance by adding correction factors to the 

equations. The derivation of these relations is based on Fig. 

2. 

 
Fig. 2.  Model of two conductors and their mirror images with respect to 

the plane of the ground. 

The self resistance 
kk

R  and self inductance 
kk

L  of the 

conductor k  (according to Fig. 2) can be determined as 

[10]: 

 17

kkkkkk
Ωm104  PωRRRR , (5) 
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where 

kk
ΔR  is the Carson's correction factor for the 

conductor k  self resistance with respect to the 

ground  1Ωm
, 

kk
L

 
 

is the Carson's correction factor for the 

conductor k  self inductance with respect to the 

ground  1Hm
, 

 

P  
 

is the factor determining the correction factor for 

the resistance  1Ωm
, 
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Q  is the factor determining the correction factor for 

the inductance  1Hm . 

For the mutual resistance 
km

R  and inductance 
km

L  

between the conductors k  and m , the following applies 

[10]: 

 17

kmkm
Ωm104  PωRR , (7) 
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where 

km
ΔR  is the Carson's correction factor for the mutual 

resistance between the conductors k  and m  

with respect to the ground  1Ωm , 

km
ΔL  is the Carson's correction factor for the mutual 

inductance between the conductors k  and m  

with respect to the ground  1Hm , 

km
a

 
 

 

is the distance between the conductor k  and the 

image of the conductor m   m  according to 

Fig. 2, 

km
a

 
 

is the distance between the conductor k  and the 

conductor m   m  according to Fig. 2. 

 

The factors P  and Q  which are used to determine 

correction factors for the resistance and inductance depend 

on the frequency ground resistivity and configuration of 

conductors. Reference [4] contains equations for their 

calculation. 

Many commercial software programs use a simplified 

Carsonʹs method to calculate electrical parameters of power 

lines with the sufficient precision. The simplified version 

of the Carsonʹs equations considers only a few expressions 

in equations for calculating factors P  a Q . After 

simplification [4], [10]: 
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IV. THEORY OF THE COMPLEX PENETRATION DEPTH 

The concept of complex depth was developed by 

Dubanton in 1969 [11], Gary in 1976 [12], and Deri [8] in 

1981. For the representation of the current flow, the ground 

is replaced by a set of conductors placed exactly under the 

real conductors at a complex depth p  (Fig. 3) [2]. It means 

that distances between conductors and their images are 

complex numbers. 

 
Fig. 3.  Model of two conductors and their images including the 

complex penetration depth p . 

 

The value of the complex penetration depth is given by 

[2]  

 m
j

0
ωμ

ρ
p  , (13) 

where j  is the imaginary unit. 

 

The self series impedance 
kk

Z  of the conductor k  can 

be determined from the equation [12]: 
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The expression 
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
 has a real and 

imaginary part. The real part will yield the losses in the 

non-ideal ground return. The result is that the conductor k  

self resistance 
kk

R  and inductance 
kk

L  are described by [2]  
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The mutual series impedance 
km

Z  between the 

conductors k  and m  is given by [2]: 
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where the quantity 
km

a  represents the distance between the 

conductor k  and the conductor m  according to Fig. 3. The 

variable 
km

a  expresses the distance between the conductor 
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k  and the image of the conductor m  as it is shown in Fig. 

3: 

   m2 2

km

2

mkkm
xphha  . (18) 

 

The impedance 
km

Z  has a real part 
km

R  and an 

imaginary part 
km

Lω  as well. The real part 
km

R  represents 

a phase shift that shows up the induced voltage for 

including the non-ideal ground return [2], [4]. 

 

V. IMPACT OF GROUND WIRES AND BUNDLED 

CONDUCTORS ON A SERIES IMPEDANCIE OF POWER LINES 

From the 220 kV voltage level, phase conductors are 

made as bundles. For the high voltage (HV) transmission 

at 110 or 220 kV, extra-high voltage (EHV) transmission 

for example at 400, 500, and 765 kV, ultra-high voltage 

(UHV) in the range of 1000 to 1600 kV it is typical that 

ground wires are located at the top of the tower. 

Bundled conductors are primarily employed to reduce 

the corona loss and radio interference. However, they have 

several advantages: they reduce voltage drops in 

conductors, improve the voltage regulation and 

transmission efficiency. Bundled conductor lines have 

higher capacitance and lower inductance than ordinary 

lines. As the inductance is reduced and capacitance is 

increased, so the surge impedance reduces and hence 

maximum power that can be transmitted is increased [4]. 

A bundle conductor is a conductor made up of two or 

more sub-conductors and is used as one phase conductor. 

It is represented by the equivalent radius and the equivalent 

factor representing the skin effect and magnetic properties 

of the conductor [4]: 

( )m=
11312ceqv

n
n

dddrr 
, (19) 

  n
ceqv
 , (20) 

where 

n  is the number of conductors in a bundle   , 

c
r  is the radius of the one conductor in a bundle  m

, 

i
d

1
 is the distance between the axis of the first 

conductor and the axis of the conductor i  in 

a bundle, if ni ÷2∈  ( )m , 

c
ξ  is the factor that represents the skin effect and 

magnetic properties of one conductor in a bundle 

  . 

 

As the current flow through the bundle is divided into 

individual conductors, the resistance of one phase per unit 

length is determined from the relationship [4]: 

 1c

eqv
Ωm

n

R
R , (21) 

where 
c

R  is the resistance of one conductor in a bundle 

 1Ωm
. 

When using the bundled conductors, the parameters 
k

r , 

k
ξ , 

k
R  (of the single conductor k ) in the equations for 

calculating the self series impedance shown above are 

replaced by equivalent quantities 
ekv

r , 
ekv
ξ , 

ekv
R . 

Ground wires are bare conductors which serve to shield 

the line and intercept lighting stroke before it hits the 

current carrying conductors below. The ground wires are 

solidly connected to the ground at each tower in the 

transmission and distribution system.  

Ground wires influence the parameters of power lines, 

their effect is included in the reduced matrix of the series 

impedance. The elimination of the series impedance 

matrix is described in [2], [4]. The reduced matrix is 

obtained: 

          1

gc

1

ggcgccred
Ωm

 ZZZZZ , (22) 

where 

 
cc

Z  is the square regular and symmetrical submatrix 

of order m  expressing the self and mutual series 

impedance of the phase conductors  1Ωm , 

 
cg

Z  is the rectangular submatrix of order nm ×  

expressing the mutual series impedance 

between the phase conductors and ground wires 

 1Ωm , 

 
gc

Z  is the rectangular submatrix of order mn×  

expressing the mutual series impedance 

between the ground wires and phase conductors 

 1Ωm , 

 
gg

Z  is the square regular and symmetrical submatrix 

of order n  expressing the self and mutual series 

impedance of the ground wires  1Ωm , 

m  is the number of the phase conductors   , 

n  is the number of the ground wires   . 

 

VI. CALCULATING THE SERIES IMPEDANCE OF 22 KV, 

110 KV AND 400 KV POWER LINES 

This chapter contains a comparison of methods for 

calculating the series impedance applied to power lines 

according to Figs. 4 to 6. Parameters of the used conductors 

and properties of the ground are shown in TABLE I. 

TABLE I.  

PARAMETERS OF CONDUCTORS USED FOR POWER LINES ACCORDING TO 

FIGS. 4, 5, 6 AND PROPERTIES OF THE GROUND  

Voltage level 22 kV 110 kV 400 kV 

Rated frequency 50 Hz 50 Hz 50 Hz 

Conductor 

type 

Phase 

conductor 
95AlFe6 185AlFe6 350AlFe6 

Ground 

wire 
 185AlFe3 185AlFe3 

Ground resistivity 150 Ωm 150 Ωm 150 Ωm 

 

http://dx.doi.org/10.14311/TEE.2018.3.047
https://creativecommons.org/licenses/?lang=en
https://electricaltechnology.org/2013/09/Generation-Transmission-and-Distribution.html


Transactions on Electrical Engineering, Vol. 7 (2018), No. 3   51 

TELEN2018006   

DOI 10.14311/TEE.2018.3.047 

The calculated parameters are given in ohms per kilometer. 

The frequency and resistivity of the ground are considered 

the same for each power line. Dimensions of electric 

towers and configuration of the phase conductors and 

ground wires in Figs. 4 to 6 are expressed in millimeters. 

In the case of the conductor resistance, the skin effect, 

temperature, rope twisting and even the sag are not 

considered. 

 
Fig. 4. Configuration of a single-circuit three-phase 22 kV power line. 

 

 
Fig. 5. Configuration of a single-circuit three-phase 110 kV power line. 

 
Fig. 6. Configuration of a double-circuit three-phase 400 kV power line. 

 

Applying the Carsonʹs method to the model of the power 

line according to Fig. 6, for the self and mutual inductance 

in a matrix form applies (values are given in mH/km): 
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Elements in the diagonal represent the self inductance of 

each conductor. Values out of the diagonal express the 

mutual inductance between conductors. The matrix 

includes self parameters of the phase conductors and 

ground wires, also relations between these conductors. By 

eliminating ground wires, the reduced matrix of the phase 

conductors is obtained, which includes the influence of the 

ground wires on phase parameters of the power line: 
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67,050,153,00,440,400,36

52,053,039,140,00,360,35

51,044,040,048,167,052,0

44,040,036,067,050,153,0

40,036,035,00,520,531,39
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L
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In Figs. 7 to 12 it is shown a graphical comparison of 

results given by the above mentioned methods for 

calculating the series impedance of the 110 kV power line. 

In the case of the self inductance (see Figs. 7 and 8), 

according to the method of the complex depth, the highest 

values were achieved. The lowest self inductance was 

determined by the Rüdenbergʹs theory. If the influence of 

the ground wire is not considered, the values of the self 

inductance determined by Rüdenberg, Deri and Carson are 

approximately identical (see Fig. 7).  

However, the existence of the ground wire at the top of 

the tower reduces the conductor self inductance (see 

Fig. 8). With considering the elimination of the ground 

wire, the conductor a self inductance is the smallest value 

because the distance between the conductor a and the 

ground wire is smaller than the distance between the 

conductors b and c from the ground wire. On the other 

hand, the inductance of the conductor c is the largest 

because it is farthest from the ground wire. 

 
Fig. 7. Comparison of the self inductance of the 110 kV power line 

determined by different methods (without considering the influence of 

the ground wire). 

 

 
Fig. 8. Comparison of the self inductance of the 110 kV power line 

determined by different methods (with considering the influence of the 

ground wire). 

 

Figures 9 and 10 describe the mutual inductance between 

the conductors a – b and a – c. It is clear from Fig. 9 the 

larger distance between conductors affects the lower 

mutual inductance between them. Just as in the case of the 

self inductance, the impact of the ground wire reduces the 

mutual inductance between the phase conductors. 

 
Fig. 9. Comparison of the mutual inductance of the 110 kV power line 

determined by different methods (without considering the influence of 
the ground wire). 

 
Fig. 10. Comparison of the mutual inductance of the 110 kV power line 

determined by different methods (with considering the influence of the 

ground wire). 

The highest values of the self resistance were calculated 

according to the Rüdenbergʹs theory and simplified 

Carsonʹs method, but they are constant values. Only the 

resistance of the ground (in the case of the Rüdenberg's 

theory) and frequency (in terms of the simplified Carson's 

method), in addition to the AC resistance of the conductor, 

is included in the calculation of its self resistance. For the 

full Carsonʹs and Deriʹs methods, the self resistance of the 

conductors a, b and c differs from each other due to 

dependence on the configuration of the conductors. The 

bigger height of the conductor above the ground, the less 

its self resistance (Fig. 11).  

 
Fig. 11. Comparison of the self resistance of the 110 kV power line 

determined by different methods (with considering the influence of the 

ground wire). 
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In the case of the mutual resistance of the 110 kV power 

line, the same facts apply as in the case of its self resistance 

(Fig. 12). The existence of the ground wire reduces the self 

and mutual resistance of the phase conductors, too. In the 

case of the 22 kV power line, values of the self resistance 

and inductance for each conductor are the same because 

the phase conductors a, b, c are placed at the same height. 

 
Fig. 12. Comparison of the mutual resistance of the 110 kV power line 

determined by different methods (with considering the influence of the 
ground wire). 

 

The Carson's theory is considered to be the most 

accurate method for calculating the series impedance of 

the above-mentioned methods, since it develops the 

calculation into infinite series. TABLE II lists the 

deviations of the remaining methods from the Carsonʹs 

conception for the power lines discussed in this article 

(with considering ground wires).  

TABLE II.  
COMPARISON OF THE RÜDENBERGʹS, SIMPLIFIED CARSONʹS AND DERIʹS 

CONCEPTION WITH THE FULL CARSONʹS METHOD FOR THE 

CALCULATING PARAMETERS OF 22 KV, 110 KV AND 400 KV POWER 

LINES 

Voltage 

level 

Calculation 

method 

Maximum 

resistance 

deviation (%) 

Maximum 

inductance 

deviation (%) 

22 kV 

Rüdenbergʹs 
conception 

1,21 1,36 

Theory of the 

complex depth 
0,28 1,26 

Simplified 
Carsonʹs 

method 

1,31 0,08 

110 kV 

Rüdenbergʹs 

conception 
2,15 0,56 

Theory of the 

complex depth 
0,48 0,78 

Simplified 

Carsonʹs 
method 

2,23 0,05 

400 kV 

Rüdenbergʹs 

conception 
2,64 0,60 

Theory of the 

complex depth 
0,59 1,14 

Simplified 

Carsonʹs 

method 

2,70 0,03 

 

 

In terms of the inductance, comparable results with the 

Carson's theory were achieved using its simplified form, 

where the maximum percentage deviation was 0,03 % (for 

the 400 kV power line). In the case of the resistance, the 

most accurate results were achieved by applying the Deriʹs 

conception (the maximum deviation 0,28 % for the 22 kV 

power line). Great differences compared to the Carsonʹs 

method were obtained by calculation according to the 

theory of Rüdenberg and simplified Carson, the maximum 

percent deviation was over 1,2 %. 

By comparing the results for different voltage levels, the 

most accurate resistance values were obtained for the 22 

kV line, at least accurate for the 400 kV line. The smallest 

inductance deviation achieved by the Deriʹs and 

Rüdenbergʹs methods was determined for the 110 kV line. 

For the Carson's simplified calculation, the smallest 

deviation value was reached for the 400 kV line 

application. 

The analysis of the various constructions and voltage 

levels of the three power lines shows that the four methods 

for calculating the series impedance of conductors produce 

comparable results. 

 

VII. CONCLUSION 

The concepts for calculating the series impedance 

discussed in this article are considered with the influence 

of the imperfectly conductive path of the ground both on 

the resistance and inductance. Each theory divides the 

resistance and inductance of a conductor into self and 

mutual, and adds to equations the corrections of different 

shapes that characterize parameters of the ground. 

The Carson's method as the only one gives an 

analytically complete solution that is expressed by 

improper integrals developed into infinite series. The 

influence of the ground on the resistance and inductance is 

expressed by the correction factors 
kk

ΔR , 
km

ΔR , 
kk

ΔL , 

km
ΔL , which are dependent on the frequency, ground 

resistivity and configuration of power lines (see Chapter 

III). The disadvantage is that this method represents 

difficult and time-consuming calculations. 

The Deriʹs model represents an approximation of the 

Carson's theory, it is much easier, sufficiently precise and 

comparable to the Carsonʹs solution. Distances between 

conductors and their images are represented by complex 

numbers (inclusion of the complex penetration depth p , 

see Chapter IV). As a result, the series impedance can be 

presented in a simple algebraic shape and easier to process 

by computers. 

The Rüdenbergʹs method considers the distance 

between the conductor and its image gD , which is 

constant, depends only on the frequency and resistivity of 

the ground. The distance gD  is much larger than the 

perpendicular distance of the conductor from the plane of 

the ground (see Chapter II). 
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