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Abstract — In recent years, electric power systems have 
been often operated close to their working limits due to 
increased power consumptions and  installation of 
renewable power sources. This situation poses a serious 
threat to stable network operation and control. Therefore, 
voltage stability is currently one of  key topics worldwide for 
preventing related black-out scenarios. In this paper, 
modelling and simulations of steady-state stability problems 
in MATLAB environment are performed using author-
developed computational tool implementing both 
conventional and more advanced numerical approaches. 
Their performance is compared with the Simulink-based 
library Power System Analysis Toolbox (PSAT) in terms of 
solution accuracy, CPU time and possible limitations.  
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I. INTRODUCTION 

Steady-state voltage stability is defined as the capability 
of the system to withstand a small disturbance (e.g. fault 
occurrence, small change in parameters, topology 
modification, etc.) without abandoning a stable operating 
point [1]-[5]. Voltage stability problems are generally 
bound with long "electrical" distances between reactive 
power sources and loads, low source voltages, severe 
changes in the system topology and low level of var 
compensation. However, this does not strictly mean that 
voltage instability is directly connected only with low 
voltage scenarios. Voltage collapse can arise even during 
normal operating conditions (e.g. for voltages above 
nominal values). Moreover, variety of practical situations 
can eventually lead to voltage collapse, e.g. tripping of a 
parallel connected line during the fault, reaching the var 
limit of a generator or a synchronous condenser, restoring 
low supply voltage in induction motors after the fault. All  
these cause the reduction of delivered reactive power for 
supporting bus voltages followed by increases of branch 
currents and further voltage drops to even lower reactive 
power flow or line tripping until the voltage collapse 
occurs. This entire process may occur in a rather large 
time frame from seconds to tens of minutes.  

To prevent voltage collapse scenarios, several types of 
compensation devices are massively used worldwide - 
both shunt capacitors/inductors, series capacitors, SVCs, 
synchronous condensers, STATCOMs, etc. To reduce 
voltage profiles (in case of low demand), var 
consumptions must be increased by switching in shunt 
reactors, disconnecting cable lines (if possible), reducing 
voltage-independent MVAr output from generators and 

synchronous condensers, etc. To increase bus voltages, 
opposite corrective actions are to be taken. These include 
reconfigurations (connecting parallel lines / transformers / 
cables), power transfer limitations and activations of new 
generating units at most critical network areas.  

Furthermore,  the voltage load shedding of low-priority 
loads (usually by 5, 10 or 20 % in total) is usually realized 
at subtransmission substations using undervoltage relays. 
These relays work similarly as on-load tap-changing 
(OLTC) transformers. They are activated by long-term 
voltage dips (in region between 0.8 and 0.9 pu) and as the 
result, they trip the load feeders - typically in steps of 1 to 
2 % of the load at any given time (with time delays of 1-2 
minutes after the voltage dip). The larger voltage dip, the 
faster and larger response of the relay [2].  

Low voltage profiles are usually averted by actions of 
OLTC transformers. However, each tap position 
corresponds to an increase of the load which eventually 
leads to higher branch losses and further voltage drops 
[1]-[2],[4]. Therefore, OLTC transformers should be 
blocked during low voltage stability scenarios. Negative 
effects of OLTC actions during low voltage conditions are 
presented in many studies with voltage stability margin 
calculation from synchrophasor measurements [6]-[7]. 

This paper is organized as follows. Chapters II and III 
describe conventional Cycled Newton-Raphson (N-R) and 
more robust Continuation Load Flow (CLF) methods for 
the voltage stability analysis, respectively. Independent 
tool - Power System Analysis Toolbox (PSAT) - is briefly 
introduced in Chapter IV. In Chapter V, key properties of 
both of the author-developed codes are discussed. Chapters 
VI and VII show the results of individual approaches when 
solving voltage stability of a broad variety of test power 
systems. Chapter VIII closes the paper with some 
concluding remarks and the evaluation of each technique 
applied.  

II. CONVENTIONAL NUMERICAL CALCULATION OF THE 

VOLTAGE STABILITY PROBLEM 

When increasing the loading (or loadability factor λ) of 
the system, its bus voltages slowly decrease due to the 
lack of reactive power. At the critical point (called 
singular or bifurcation), characterized by maximum 
loadability factor λmax and critical bus voltages, the system 
starts to be unstable and voltage collapse appears (system 
black-out). From this point on, only lower loading with 
low voltage values leads to the solution. The dependence 
between bus voltage magnitudes and λ is graphically 
represented by the V-P curve (also referred to as the nose 
curve). Unfortunately, the current (so-called base-case) 
position of the system operating point on the V-P curve is 
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not known along with its distance from the voltage 
collapse (so-called voltage stability margin). Thus, 
location of the singular point must be found during the 
voltage stability analysis. 

Note: Values of λmax and critical voltages are rather 
theoretical since they do not reflect voltage/flow limits of  
network buses/branches. When incorporating these 
practical restrictions, the real maximum loadability λmax

* 

can be found (i.e. the maximum value for keeping all 
network buses and branch loadings within limits).  

Traditional approach for finding the maximum system 
loadability is to apply the standard N-R method [8] for the 
base-case load flow calculation (i.e. for λ = 1.0). When 
obtaining current position on the V-P curve, network 
loading (i.e. loads/generations in selected network buses) 
is  increased in defined manner by a certain step and the 
load flow is computed repetitively along with a new 
position on the V-P curve. This process continues in an 
infinite loop until the singular point is reached. However, 
total number of iterations in each V-P step is gradually 
increasing so that when close to the singular point, the N-
R method fails to converge, i.e. no solution is provided. 
This relates to the fact, that Jacobian J becomes singular 
(i.e. det J ≈ 0) and its inverse matrix cannot be computed 
for successful numerical convergence. 

For speeding up the calculation, a variable step change 
is applied. Usually, a single default step value is used. 
When obtaining the divergence of the N-R method, the 
step size is simply divided by two and the calculation for 
the current V-P point is repeated until the convergence is 
achieved. When the current step size value reaches the 
pre-set minimum value, the calculation is stopped. Despite 
of the relatively simple procedure, the Cycled N-R method 
enables the completion of the stable V-P part only. The 
unstable part including the singular point cannot be 
examined. Also, high CPU requirements prevent this 
method from being employed for larger power systems. 

In this paper, the Cycled N-R algorithm was developed 
and further tested on wide range of test power systems. 

III.  CONTINUATION LOAD FLOW ANALYSIS 

The CLF analysis [1],[9] suitably modifies conventional 
load flow equations to become stable also in the 
bifurcation point and therefore being capable of drawing 
both upper/lower parts of the V-P curve. It uses a two-step 
predictor/corrector algorithm along with the new unknown 
state variable called continuation parameter (CP). 

 The predictor (1) is a tangent extrapolation of the 
current operation point estimating approximate position of 
the new point on the V-P curve.  
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Vector K contains base-case power generations and 
loads. Variables θ0, V0, λ0 define the system state from the 
previous corrector step. The vector ek is filled with zeros 
and certain modifications (see [1],[9]) are implemented 

for the selected CP in each network bus k at the current 
point on the V-P curve. Remaining elements in (1) are the 
newly computed Jacobian J and step size σ of the CP. 

The tangent predictor is relatively slow, anyway shows 
good behaviour especially in steep parts of the V-P curve. 
Unlike the tangent predictor, secant predictor is simpler, 
computationally faster and behaves well in flat parts of the 
V-P curve. In steep parts (i.e. close to the singular point 
and at sharp corners when a generator exceeds its var 
limit) it computes new predictions too far from the exact 
solution. This may eventually lead to serious convergence 
problems in the next corrector step. Therefore, the tangent 
predictor is more recommended to be applied.  

The corrector is a standard N-R algorithm for correcting 
state variables from the predictor step to satisfy load flow 
equations. Due to one extra parameter λ, additional 
condition (2) must be included for keeping the value of 
the CP constant in the current corrector step. This 
condition makes the final set of equations non-singular 
even at the bifurcation point. 
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Difference between both types of predictors and the 
entire process of the predictor/corrector algorithm is 
graphically demonstrated in Fig. 1. Horizontal/vertical 
corrections are performed with respect to the chosen CP 
type. 

 

 
Fig. 1. Predictor/Corrector Mechanism for the CLF Analysis [10]. 

As the CP, state variable with the highest rate of change 
must be chosen (i.e. λ and V in flat and steep parts of the 
V-P curve, respectively). When the process starts 
diverging, parameter σ must be halved or parameter CP 
must be switched from λ to V. 

The step size should be carefully increased to speed-up 
the calculation when far from the singular point or 
decreased to avoid convergence problems when close to 
the peak. The step size modification based on the current 
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position on the V-P curve (i.e. as a function of the line 
slope for previous two corrected points on the V-P curve) 
is recommended in [11]. This approach belongs to so-
called rule-based or adaptive step size control algorithms. 

 In [10], several voltage stability margin indices 
(VSMI i, VSMIik) are presented along with relative var 
reserve coefficient and voltage-load sensitivity factors 
(VSFi) for comprehensive voltage stability analysis and 
location of weak or sensitive system buses/branches/areas. 
In these regions, preventive or remedial actions should be 
taken. Procedures for allocating individual compensation 
devices and possible effects are also discussed. 

The CLF analysis still remains very popular for high-
speed solving of voltage stability studies. Due to its 
reliable numerical behaviour, it is often included into the 
N-R method providing stable solutions even for ill-
conditioned load flow cases. Moreover, it is applied in 
foreign control centres for N-1 on-/off-line contingency 
studies with frequencies of 5 and 60 minutes [2], 
respectively. 

IV.  POWER SYSTEM ANALYSIS TOOLBOX (PSAT) 

PSAT [12] is a Simulink-based open-source library for 
electric power system analyses and simulations. It is 
distributed via the General Public License (GPL), its 
download and use is free of charge. However, there is no 
warranty that the Toolbox will provide correct and 
accurate results. All corrections and possible repairs or 
improvements are to be done on the customer side. 

It contains the tools for Power Flow (busbars, lines, 
two-/three-winding transformers, slack bus(es), shunt 
admittances, etc.), CLF and OPF data (power 
supply/demand bids and limits, generator power reserves 
and ramping data), Small Signal Stability Analysis and 
Time Domain Simulations. Moreover, line faults and 
breakers, various load types, machines, controls, OLTC 
transformers, FACTS and other can be also modelled. 
User defined device models can be added as well. 

All studies must be formulated for one-line network 
diagram only - either in input data *.m file in required 
format or in graphical *.mdl file, where the schema is 
manually drawn. For the former option, input data 
conversions from and to various common formats (PSS/E, 
DIgSILENT, IEEE cdf, NEPLAN, PowerWorld and more 
others) are available.  

When compared to another MATLAB-based open-
source tool MATPOWER [13], PSAT is more efficient 
and highly advanced by providing more analyses, problem 
variations, possible outputs and other useful features in its 
user-friendly graphical interface. MATPOWER does not 
support most of advanced network devices, entirely omits 
CLF analysis and has no graphical user interface or 
graphical network construction ability. Also, it does not 
consider var limits in PV buses. Incorrect interpretation of 
reactive power branch losses can be also observed. 

V. PROPERTIES OF AUTHOR-DEVELOPED CODES IN 

MATLAB  ENVIRONMENT 

Both Cycled N-R and CLF procedures were developed 
in MATLAB environment for providing fundamental 
examination of medium-sized and larger power systems in 
terms of steady-state voltage stability. Several key aspects 
of these codes are discussed below. 

1] Predictor: Despite of computationally more complex 
algorithm, the tangent predictor was used for finding 
reliable estimations of new V-P points especially around 
the singular point. It is applied in CLF algorithm only. 

2] Corrector: First, a corrector step is used at the start of 
the CLF program to find the base-case point for further 
calculations. Due to possible weak numerical stability at 
this point (for badly-scaled power systems), the One-Shot 
Fast-Decoupled (OSFD) procedure is implemented to the 
standard N-R method for providing more stable solutions 
and thus preventing numerical divergence. Moreover, 
voltage truncation (SUT algorithm) is also included into 
the state update process at every N-R's iteration. Both of 
these stability approaches were introduced in [14] and 
further tuned and tested in [15]. Both were also applied to 
the Cycled N-R algorithm to increase the loading range, 
for which the stable load flow solutions can be obtained 
(i.e. closer proximity to the singular point can be reached). 

3] Step size: Largest-load PQ network bus is chosen for 
computing the angle α between the horizontal and the line 
interconnecting two adjacent V-P points. Based on this, 
the step size evaluation function (3) is applied - see Fig. 2.  
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The upper and lower step limit constants σU and σL 
define the step size for the flat part of the V-P curve and 
for close vicinity to the singular point, respectively. 

 
Fig. 2. Step size evaluation function [10]. 

For the Cycled N-R algorithm, this is a rather too 
complex concept of the step size control. Therefore, only a 
single step size is chosen at the start and a simple step-
cutting technique (dividing by 2) is applied in case of 
divergence. 

4] Ending criterion: Only stable part of the V-P curve 
(incl. exact singular point calculation) is computed by the 
CLF code. Thus, if the computed value of λ begins to 
decrease, the process is stopped. For the Cycled N-R code, 
the calculation is terminated when the step size falls below 
a certain small value (e.g. 1×10-8). For each load flow 
case, maximum number of iterations and permitted 
tolerance for convergence is set to 20 and 1×10-8, 
respectively. 
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5] Calculation speed and accuracy: For excessively 
accurate voltage stability solutions, values of σU and σL 
2.5×10-2 and 6.25×10-4 are used in the CLF algorithm. 
Rather compromise values of 5×10-2 and 1×10-2 are also 
used to obtain fast and fairly accurate solutions for any of 
tested power systems. For the Cycled N-R algorithm, 
initial step size of 2.5×10-2 is chosen as sufficient. 

6] Code versatility: Both Cycled N-R and CLF 
procedures are programmed so that the user directly 
specifies an arbitrary group of network buses for an 
load/generation increase. From this set of buses, only 
those non-slack buses with non-zero active power 
loads/generations are activated for the analysis. In all 
studies performed, a load/generation increase in the entire 
network (i.e. all network buses selected) is considered. 

Two scenarios can be activated by the user. a) L 
scenario increases both P/Q loads in selected PQ/PV buses 
with a constant power factor (i.e. with identical increase 
rate). b) L+G scenario increases both P/Q loads in selected 
PQ/PV buses and P generations in selected PV buses (with 
identical increase rate). 

7] Var limits: In both approaches, bus-type switching 
logics are applied to iteratively computed reactive powers 
QGi in PV buses when exceeding the var limit (4) or to 
relevant bus voltages when returning the vars back inside 
the permitted var region (5). Symbol (p) denotes the current 
iteration number. 

( )
( )

( )
min

max

min

max

if

if

Gi
p

Gi

Gi
p

Gi

Gi

Gip
Gi

QQ

QQ
    

Q

Q
Q

<
>





=

        

     (4) 

( )

( ) 















<=

>=
=

sp
iiGi

p
Gi

sp
iiGi

p
Gi

sp
ii

V V QQ

 

V V QQ

  VV

AND

OR

AND

if

min

max

  
(5) 

The terms QGimax and QGimin are the upper and lower var 
limits, the term Vi

sp determines the specified value of the 
voltage magnitude for each PV bus. 

8] Code limitations: a) With increased loading, 
lower/upper var limits in PV buses should not be fixed but 
variable proportionally to the generated active power. In 
both codes, constant var limits are used for more 
pessimistic V/Q control. b) Only identical increase rate is 
applied. However, implementing user-defined increase 
rates for each load/generation would not pose any serious 
problem. 

9] Sparse programming: Sparsity techniques along with 
smart vector/matrix programming are used in both Cycled 
N-R and CLF codes to significantly decrease the CPU 
time needed for each load flow case. 

10] Outputs: Theoretical value of λmax and V-λ data 
outputs for V-P curves are computed and stored or 
graphically projected. Respective values of λ for switching 
some of PV buses permanently to PQ are also recorded. 
Voltage and power flow limits were not considered for the 
evaluation of the real maximum loadability λmax

*. 

VI.  TESTING OF CYCLED N-R AND CLF ALGORITHMS FOR 

SOLVING VOLTAGE STABILITY LOAD FLOW PROBLEMS 

Total number of 50 test power systems between 3 and 
734 buses were analyzed using developed Cycled N-R and 
CLF algorithms in the MATLAB environment. Identical 
increase rate was applied to all network buses (before 
filtering those with non-zero active power loads or 
generations). For both L and L+G scenarios, only stable 
part of the V-P curve was calculated with included var 
limits. Settings of both codes are as introduced in Chapter 
V, paragraphs 4] and 5]. In Tab. I., voltage stability 
solutions of several test cases are shown. Presented results 
contain the maximum loadability, numbers of stable V-P 
points and CPU times in seconds needed. 

For each case, the first two rows show the outputs of 
the CLF code for excessive accuracy and compromise 
accuracy, respectively. For comparison purposes, the third 
row provides the results of the Cycled N-R code. 

TABLE I.  
VOLTAGE STABILITY SOLUTIONS  USING CYCLED N-R AND CLF 

ALGORITHMS - L AND L+G SCENARIOS 

Scenario L Scenario L+G Case 
λmax [-] pts CPU [s] λmax [-] pts CPU [s] 

1.302632 331 0.5616 1.162053 215 0.3900 
1.302632 27 0.1404 1.162052 24 0.1248 IEEE9II 
1.302632 23 0.4056 1.162053 20 0.4212 
1.760331 658 1.2012 1.777995 506 0.9360 
1.760331 87 0.2340 1.777995 59 0.2028 IEEE14 
1.760331 43 0.5460 1.777995 45 0.6396 
1.536905 854 1.9500 1.546751 726 1.6536 
1.536905 88 0.2808 1.546752 124 0.4212 IEEE30 
1.536905 37 0.6396 1.546751 37 0.6552 
1.406778 891 2.9016 1.616845 399 1.3884 
1.406778 229 0.6864 1.616845 57 0.2652 IEEE57 
1.406778 27 0.8112 1.616845 37 0.8112 
1.079959 1640 12.9169 1.138996 1185 9.3913 
1.079960 464 3.1044 1.138996 65 0.8112 IEEE162 
1.079960 13 1.7628 1.138996 16 1.8408 
1.024573 8457 103.8655 1.058820 311 4.0092 
1.024573 529 7.0044 1.058819 94 1.4508 IEEE300 
1.024573 16 2.4180 1.058820 17 2.5584 
3.104162 139 4.5864 3.104162 139 4.8360 
3.104083 46 1.8720 3.104083 46 1.8408 EPS734II 
3.104162 96 8.2369 3.104162 96 8.1745 

 
As can be seen, exact solutions of maximum loadability 

were obtained for both of tested methods and each of the 
three accuracy settings. The first setting was definitely too 
much focused on producing exact results. Therefore, 
numbers of V-P points and CPU times were pushed often 
above 200 and 1 second, respectively. When using fair 
compromise setting, the maximum error for λmax from all 
50 test power systems was only 0.0185 percent, while 
numbers of points and CPU times were decreased on 
average by 75.27 percent and 64.11 percent, respectively. 

The  Cycled N-R code obtains highly accurate results in 
terms of solution accuracy. In majority of cases, it 
provides even better solutions than CLF algorithm with 
compromise accuracy. Surprisingly, it always computes 
slightly higher maximum loadability values than by the 
high-accurate CLF code. This seems to be one visible 
drawback of the Cycled N-R method. Only low numbers 
of V-P points are needed for reaching close proximity to 
the singular point. These numbers are well comparable to 
those needed for the compromise CLF code. 
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Unfortunately, each divergence case (between 22 and 28) 
significantly delays the entire computation process of the 
Cycled N-R method. Therefore, the Cycled N-R code 
suffers from being extremely time-dependent on 
computing of each V-P point. When compared with  the 
compromise CLF code, the CPU time needed by the 
Cycled N-R method is on average about 167 % higher.  

Therefore, the compromise CLF code seems to be the 
best method for providing fast and highly accurate voltage 
stability solutions. 

Stable V-P curves of the IEEE 30-bus power system 
(L+G scenario) are computed by both Cycled N-R and 
CLF methods and shown in Figs. 3 and 4, respectively. 
For the CLF method, the V-P curves are extended to 
demonstrate numerical stability of the CLF algorithm 
around the singular point. Extension of V-P curves in the 
unstable region is provided for 0.97×λmax < λ < λmax. 
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Fig. 3. V-P curves for the IEEE 30-bus system (Cycled N-R method). 
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Fig. 4. Extended V-P curves for the IEEE 30-bus system (CLF method). 

As Tab. I. indicates, applied version of the CLF method 
is still not applicable for real-time voltage stability 
monitoring, but it can be useful for off-line reliability, 
evaluation or planning studies of even larger networks. 

VII.  TESTING OF PSAT FOR SOLVING VOLTAGE STABILITY 

LOAD FLOW PROBLEMS 

Before solving voltage stability in PSAT, the load flow 
analysis of a system must be performed. Therefore, large 
number of load flow studies is solved using PSAT to 
detect any of its possible weaknesses. Results were 
compared with the author-developed N-R code in 
MATLAB. 

Despite of unconstrained network size to be solved, 
several limitations of PSAT were found during the testing 
stage. 1] Inefficient PV-PQ bus type switching logic is 
applied. Probably, reverse switching logic (5) is not used 
and the need for convergence is requested to activate 
forward switching logic (4). As a result, unnecessarily 
more PV buses are being switched permanently to PQ. 
Furthermore, the switching logic completely fails to 
switch PV buses to PQ for larger systems with high 
numbers of PV buses. 2] Nominal voltages must be 
defined in the input data file or the error message 
'Divergence - Singular Jacobian' is obtained during the 
simulation. This seems to be entirely illogical since 
nominal voltages should not be necessary for the 'in per 
units defined' problem. 3] It seems that no advanced 
stability techniques are applied for the N-R method in 
PSAT because of severe numerical oscillations appearing 
in several studies. 4] PSAT intentionally neglects 
transformer susceptances and thus causes errors in final 
load flow results. A column for shunt susceptances is 
available for power lines only. For transformers, this 
column is filled with zeros by default.  

Under these limitations, load flow results show very 
good congruity between the author-developed N-R 
method and PSAT. Higher total numbers of iterations are 
needed by PSAT due to missing stability technique(s). 
Also, CPU times are higher in PSAT due to combining the 
codes with other analyses and related tool features. 

As an example, the load flow and voltage stability 
analysis of the IEEE 14-bus system is done by PSAT 
(Figs. 5-9). 

 

 
Fig. 5. GUI in PSAT for the load flow analysis of IEEE 14-bus system. 
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Fig. 6. Final voltage magnitudes of IEEE 14-bus power system in PSAT. 

 

 
Fig. 7. Final voltage angles of IEEE 14-bus power system in PSAT. 

 
For voltage stability studies, PSAT contains the 

advanced CLF algorithm, which is combined with 
contingency and OPF analyses. Load flow data are 
extended by two matrices specifying the sets of PQ and 
PV buses, where the loads and generations are to be 
increased (different increase rates are possible). Thus, 
various loading scenarios of the system can be modelled.  

The CLF code is then started via a specialized window 
(Fig. 8). Calculation can be adjusted by the user for better 
computational performance - e.g. by setting a more 
suitable step size, maximum number of V-P points or by 
checking the option for controlling voltage, flow or var 
limits. PSAT offers two CLF methods - perpendicular 
intersection (PI, as in Fig. 1) and local parametrization 
(LP). Three stopping criteria are available: The complete 
Nose Curve (computing both stable/unstable parts of the 
V-P curve), Stop at Bifurcation (when singular point 
exceeded) and Stop at Limit (when voltage/flow/point 
limit hit). 

 

 
Fig. 8. Settings for the CLF analysis when solving the IEEE 14-bus 

power system. 

The CLF algorithm in PSAT is defined so, that power 
increases are realized by adding a power increment 
(loadability factor multiplied by the increase rate) to the 
base-case loading, i.e. initial λ is zero. In the author-
developed Cycled N-R and CLF codes, power increases 
are performed by multiplying the base-case loading with 
λ. Therefore, the maximum loadability in PSAT must be 
increased by unity when comparing both codes. 

 

 

Fig. 9. Nose curves for all network buses of the IEEE 14-bus test system 
in PSAT. 

In Tab. II., voltage stability results for medium-sized 
IEEE test systems are provided by the author-developed 
Cycled N-R and compromise CLF codes. These outputs 
are compared to those obtained by PSAT - see Tab. III. In 
PSAT, both of the CLF modes were tested (i.e. PI with 
step 0.025 and LP with default step 0.5). 

TABLE II.   
VOLTAGE STABILITY ANALYSIS OF MEDIUM-SIZED IEEE TEST SYSTEMS  

(CYCLED N-R VS. COMPROMISE CLF) 

L+G Cycled N-R code Compromise CLF code 

Case λmax [-] pts CPU [s] λmax [-] pts CPU [s] 

IEEE9 2.485393 74 0.5460 2.485382 84 0.2964 

IEEE13 4.400579 148 0.6708 4.400577 112 0.3120 

IEEE14 4.060253 137 0.8268 4.060252 92 0.3276 

IEEE24 2.279398 61 0.6396 2.279398 58 0.2496 
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IEEE30 2.958815 88 0.8112 2.958814 57 0.2964 

IEEE35 2.888962 91 0.6864 2.888950 107 0.3432 

IEEE39 1.999203 57 0.7644 1.999202 30 0.2184 

IEEE57 1.892091 47 0.8892 1.892089 92 0.4836 

IEEE118 3.187128 100 1.6536 3.187128 66 0.5772 

TABLE III.   
VOLTAGE STABILITY ANALYSIS OF MEDIUM-SIZED IEEE TEST SYSTEMS  

(PSAT - PI VS LP MODE) 

L+G PSAT - PI mode PSAT - LP mode 

Case λmax [-] pts CPU [s] λmax [-] pts CPU [s] 

IEEE9 2.481220 7 0.2093 2.482000 13 0.3241 

IEEE13 4.390420 13 0.3292 4.399570 20 0.4832 

IEEE14 4.060100 18 0.4098 4.059420 19 0.4939 

IEEE24 2.277550 10 0.2600 2.278670 16 0.4313 

IEEE30 2.958550 16 0.8761 2.958250 20 1.5023 

IEEE35 2.872940 16 1.1242 2.878420 10 0.2940 

IEEE39 1.999110 11 0.2932 1.997840 12 0.3692 

IEEE57 1.891920 12 0.9089 1.892090 26 3.9090 

IEEE118 3.187100 613 19.1693 3.187120 82 19.7464 

 
Theoretical values of λmax, numbers of stable V-P points 

and CPU times in seconds are provided for comparison. 
For all voltage stability studies in PSAT, identical power 
increase rates were considered. Only the L+G scenario 
was examined, logics for var limits were deactivated. 

Both of PSAT modes showed only average accuracy 
with satisfiable numbers of V-P points and rather lower 
computational speed. The LP mode was computationally 
more time-consuming, but needed lower numbers of V-P 
points and usually provided more accurate results. The 
compromise CLF code provided the best combination of 
solution accuracy and CPU time requirements in each of 
the cases. Although higher numbers of V-P points were 
needed, CPU times were still significantly smaller than 
those in PSAT due to optimized sparse programming 
applied. Identical conclusions can be made when mutually 
comparing CLF and Cycled N-R codes. 

VIII.  CONCLUSION 

For solving voltage stability problems, both the Cycled 
N-R and CLF codes were programmed and 
comprehensively tested on a broad range of test power 
systems in MATLAB environment. Various stability 
techniques, step size approaches and numerical settings 
were applied and used to upgrade their performance in 
order to find the algorithm with fair compromise between 
calculation speed and solution accuracy. The results were 
compared with  outputs obtained from PSAT. The studies 
imply that the best technique (i.e. best combination of 
precision level and CPU requirements) is the CLF 
algorithm with compromise step size settings programmed 
by Author in MATLAB. However, final technique can be 
applicable in practice only for off-line planning and 
development studies of electric power systems. For real-
time evaluations of system's voltage stability, a more 
robust algorithm with minimized numbers of stable V-P 
points must be developed. Therefore, follow-up research 
activities will be concentrated especially on this area of 
interest.  
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