Transactions on Electrical Engineering, Vol. 2 (3D1No. 3 89

Cross slide mathematical model
for solving chatter

Jiti Ondrasek
VUTS, a.s./Mechatronics Department, Svarovska 860,01 Liberec XI, Czech Republic,
e-mail:jiri.ondrasek@vuts.cz

Abstract—The paper deals with the issues of creating a  objects, in the following part of the text theree again
mathematical model of self-excited chatter of thecrossslide.  provided some basic relationships of continuousgirgyt
This type of oscillation occursin systems where there s till machining operation that are based on those as&mapt

an internal source from which the system consumes ener gy 1) Cutting forceF is proportional to widttb and depth

to maintain or even to increase the amplitude of oscillation. f eutw in the directi fth | to th hined
This consumption is controlled by an oscillatory movement of cutyy In the airec |9n of the normal to the machine
surface by the relation:

of the system itsdlf. Such an energy source greatly affectsthe

dynamic and stability properties of the system. F =-Gby, . (1)
Keywords—chatter, cross slide, chip thickness, |shgrdm 2) Cutting force constar@, is independent of speed.
I. INTRODUCTION 3) Cutting edge geometry does not affect the direct

) ) _ correlation between forde and chip depthyy in the
One of the main causes of generating self-excitedgrmal direction.

vibration in mechanical systems is dry friction veeén
two mutually moving parts that are directly relatex ; ; -
damping in the system. Chatter is undesirable aerdet ggg‘spﬁé?ﬁﬂgﬁuéa\:vit&tgﬁ ngrer&?lr: of the machinathsa)
are efforts to avoid it either by increasing positi o 9 P i )
damping or eliminating the causes of negative dagipi _ 2) Friction forces between tool, workpiece and leaving
The frequency of steady chatter is close to theraht ChiP are neglected.

frequency of a mechanical system. In Fig. 1, there is shown a block diagram of the

This phenomenon often occurs during machiningtontinuous machining process in which the dynamic
operation when a part of the energy of cutting pssc system can be described by the so-called oriented
during cutting operation can change in the energ{ynamic compliance {&s). This is a transfer function
oscillating the machine as a whole. Vibration therP€tween the Laplace transforms of cutting forc¢ B(sl
manifests in a significant waviness of the cutacefand the movement of the tool group y(s):
is usually accompanied by noise. Generally, it is y(s)
theoretically possible to establish a certain rasfgeutting G,(s)==-, (2
conditions under which, when applying them, no that F(s)
arises. One of the means of such a designatiopeieds |\ here s is the complex variable.

stability diagram —lobe diagram which expresses the . . o . .
depen%/ence?of chip thicknesgs on the Workplioece sieed T depth of chipyy(t) < O is specified, cutting forde is
generated which will cause the movement of toolugro

methodology of creating lobe diagrams is basedhen t(y(t) that will be superimposed to the specified degth,

Laplace transform images of the cutting force an : Al Al
movement of a tool group in the direction of materi NStantaneous chip depy(t) is given by an expression:

removal. - - Yo (1) = Yo t) + ¥ (0). ©)
The very issue of dealing with chatter in cutting ) ) ) ) _ )
machining operation is creating the mathematicaleto =~ The chip thickness is negative because chip cutting
of the following physical objectsvlodel of the machining occurs in the opposite direction of thexis orientation. If
process Model of mechanical system inclusive flexiblethere is a case gi(t) > 0, the cutting edge got out from
links and real constraintsDrive model that presents a engagement. When working with a fixed time link

4) Angle # (an angle between cutting for€eand the

model of electromotor itself and its control between the cuts, the freshly machined surface getl
again into contact with the tool after a definedeiwith
Il. CHATTER the socalled transport time deldy. This fact can be
A mathematical process of machining process igxpressed with a relation:
described in detail in publication [2], see Chapera Y (0) =y (t) + y(t) — y(t =T,), 4)

brief description of continuous machining is given

article [1], as the case may be. In the case ditimg a  WhereYo(t) is the feed per one revolution, teytt) is
mathematical model of the cross slide to investigatVvalid for immediate waviness and teft-Tq) applies for
chatter it is assumed the latter mentioned methbd avaviness from the previous cut which will come unde
machining. For this reason and for the reason ef ththe cutting edge of the tool over a time perigd

logical linking of mathematical models of particula
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Fig. 1. Continuous machining and its block diagram.

Wavinessy(t-Ty) from the previous cut together with an  3) From pairsf < n; andf « by, there are assembled
immediate tool positiog(t) always affects the variation of pairsn; < by, Which are shown as a set of curvel®bs
chip depthyy(t), seeFig. 1, where the instantaneous chip for various value$ again.

depthyy attimet = t; is shown. The Laplace image of 4) The individual Jobs' may intersect each other and

equation (4) is: the area of the stable widths is under their lower
Tis envelope.
V()= Yo(8)+ y(s){L-e™). (5) P
Using equations (1), (2) and (5), the closed laapgfer lll. EFFECT OF FEED I?RIVES ONTHE C%TTER
as toFig. 1 can be determined in the following form: The shape of speed diagram and defining the areas o

stability in the diagram depend, in addition to the

properties of the coupled mechanical system, afsthe
(6)  characteristics of feed drives. In the same waythes
behavior and properties of a mechanical systero, this
behavior and properties of a control drive can be
considered. They are commonly expressed by thendigna
flexibility of the control when it is again a trdes
function. The total dynamic compliance of the a&sed
dynamic system is then determined on the basihef t
causal interconnection of particular dynamic systeine.,
feed drives and a mechanical system. This intem@ciion

HNOES (0 I — G R
T Y0(9) 1+ gbG, (s)(1-e7)

To ensure the stability of the machining processs it
necessary so that chip widthdoes not exceed the limit
chip widthby,e,at which the amplitude characteristic of the
closed loop transfer (6) shall not exceed the levi¢l at
any angular frequency. This condition is expressed by
the relationship:

1 is simple since the outputs of the one systemrgrets$ of
b<B,=~ 2,[Re..G, (1) = funkc&(@), (7)  the second system, as showrig. 2 andFig. 3.
0\ g™y min In computer simulations it is assumed that theedaf
in which Re.G, represents negative values of the reafn€ feeds of machine tool will be implemented by a
component of dynamic complian@, see [2]. 3phase synchronous electromotor with permanent

magnets with which an exciting magnetic rotor flisv
produced. For the purposes of simulations, the tnofle
this servomotor was replaced by a simplified madath
is based on the description of a DC motor, Bigg 2, in
. which the blockMechanical systers a motor rotor with
f=n|N +1—£arctg ReG,(jw) = funkce(w), (8) Mass moment of inertia The parameters of a single coil,
‘ T ImG, (jw) ie., inductanceLs, electrical resistancdk; and motor
voltage constankg are substituted in this model. Only at
wheref = w/2z is the frequency of self-excited vibrations torque constari; it is necessary to substitute the value:
on the limit of stability for each value ®f individually.
NumberN indicates the number of whole waves of the K. =3k (9)
workpiece surface ripple to be incurred over peflga ek !
genﬁé rg?:d m”p r\;?:rtiségna SO; oltlrc])(\e/v Ss.tabmty lobe diagram is whereby the common interaction of all three calsaken
i T . into account, see [4]. Furthermore, in the schetiere
1) To the theoretically or experimentally determinedstands U  for voltage, | electrical current, M
set of the values of dynamic compliance, there ar@jectromagnetic torquey rotor angular velocity ang
completed arranged paiir$-> bye,as to (7). rotor angular displacement. The above given pammmet
2) By means of (8), there are created pdirs> n;  of the electromotor were substituted in its simolat
repeatedly for valuell = 0,1,2,... which may be further model from the data sheet stated by the manufacture
displayed by a set of curvés f(ny).

The stability lobe diagram expresses the dependeaince
limit chip width by, on the speed of workpieae. The
speed equation, see [1], is given by the expression

u 1 I M | Mechanical R
Ls+R, system
— U ()

E e |

~

Fig. 2. A simplified block diagram of a synchronaustor.
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Fig. 3. A cascade control circuit with a curreneap and position feedback.
In the vector control of this type of electric moti is Knowing kinetic E,, potential E,, and dissipativeRy

almost exclusively used the cascade control ciraith  energies of the coupled mechanical system, it &sipte
three hierarchically arranged feedbacks: currepged to establish equations of motion. Together withsbeond
and position, se€ig. 3. Maintaining the required values time derivative of constraint conditiorf§, a summary
of position, revolutions and current is ensured RIp  record of these equations in matrix form can b&uohed:
linear controllers. Constaht is a proportional component B )

of the controller, constank; expresses the integral time M -J3"|[d]_|p.-Dg-Kq (12)
constant of the controller and@ly is a derivative time 3 o0 I»rl" P, '

constantp =y, v, I. Indexo reflects competence of the

various constants to the position, velocity andrentr in which:

feedback. Those constants in the control structure

according toFig. 3 were debugged for the needs of the J= ofY

simulation model by the Ziegler-Nichols method, fele _aiT (13
In the diagram irFig. 3, y expresses the position of the d

tool group,v its velocity, and * denotes the desired valueexpresses the Jacobi matrix of the system of cogpli
of a particular variable. equations. Symbolsvl, K and D are gradually mass,
stiffness and damping matrices of the mechanicstesy

IV. MATHEMATICAL MODEL OF A MECHANICAL SYSTEM as a whole. Vectons, andp, are:

A. Mathematical description of a coupled mech. system

.
To build equations of motion of a coupled mechanica p,=Q-f-Mg +1{0Mq} q,
system with flexible links, it is usually based dime 2| 0q 14
Lagrange equations of mixed type which in matrirfo P o (of 3%V (14)
are as follows: p,=-—=(39)g - 2T(Jq -,
dq og | ot ot

E \Y
d(aEk] - (OE,(] + (G"J + (GR,] =Q+ {af }x, (10)  where vectof? is the vector of gravitational forces.

dt{ 9q 9 9 9q 9q Equations (12) compose a systems| of algebraic-
whereE, andE, represent the kinetic and potential energydifferential equations for unknown generally dependent
of a mechanical systemR; the so-called Rayleigh physical equationg ands unknown Lagrange multipliers
dissipative function and vect@ represents the vector of * 1hese equations are currently assembled and sbjved
action generalized forces whose components comespo COMPutational mechanics _ .
to appropriate coordinateg. To describe the coupled Compre_henswe information about _ creating
mechanical system, there are used generally dependenathematical models of multibody systems with fhéi
physical coordinateg of dimensiorr, which are coupled bodies is cited e.g. in publication [3].

by a systens of scalar constraint conditions: B. Frequency response of the coupled mechanical system

f¥(q.t)=0. (11) Transfer functions between the acting forces amd th
. . ) ) mass displacements of the controlled mechanicaésys
Fori-th flexible (pliable) body, coordinate vecigrcan be  with discretely distributed mass and stiffness paitars
written as: are generally determined by the relevant matrimelats:

q :’_rhpi’qei-" G(s)=(Ms’ +Ds+K)™. (15)

in whichr; is the vector of the coordinates that define therhe method of determining the transfer functionttod
location of the given body in a fixed coordinatesteyn  mechanical system according to relation (15) is
Oxyz Orientation of the body in the basic space isapplicable only for linear non-conservative mechahi
determined with Euler parameterp. The elastic systems. In the case of mechanical systems in vihiie
deformations of the body are expressed by the vexfto occur nonlinearities due to passive resistances in
elastic (or standardized modal) coordinateg.  kinematic constraints for example, it is advisableise a
Furthermore, in equations (10), vectbrof Lagrange method in which the system is excited by the swept
multipliers is found in the number sfthat have a direct signal. It is one of the possible methods thatvedldhe
connection with the reactionary forces in kinematicstudy of nonlinearities in the time domain only.tBg a
constraints. The coupled mechanical system isrequency response of a nonlinear dynamic system is
characterized by=r —s degrees of freedom. possible only round about the operating point.
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u(t) H(iw) y(t)

Fig. 4. Time-invariant system block.

Consider a dynamic system described by the frequenc

response:

Y(ia)

HUD=G e

(16)

whereY(jw) andU(jw) are the images of output and input

signal y(t) andy(t), seeFig. 4. Because it is a complex
function,
imaginary parts:

H(jo) =V(a) + W(w) , 17)

with which the amplitude par\(w) and the phase part
o(w) of frequency response can be determined:

A(@) =|H (jw) =+V*(@) +W* (@),

o = e W@ ) (18
#(w) = arg(H (jw)) = arcta Vie) j
Alternatively:
Re{H (ja)} =|H (jw)cosp(w), (19)

Im{H (jw)} =|H (jw)sing («w).
If a swept sine wave signal is fed to the systepoin
u(t) = A sin(7t?), (20)

then, a signal with variable frequency and ampétudill
be stabilized at the system output:

y(©) = A, @)sin(et)t + 4). (21)

Subsequently, both signals are converted with Bouri
transformation into the frequency domain and byirthe

dividing according to (16), it is set the appropia
frequency response around the given operating phint

it can be decomposed into the real an

If any of the eigenvalues should have a positia part,

it would be an unstable mechanical system. The
relationship between the imaginary part of the migdue

pi and the natural frequency of the systeady is
determined by the following conversion:

s
Qq =5 (24)

V. MATHEMATICAL MODEL OF A CROSS SLIDE

The aim of the calculations in the mathematical etod
of the chatter of the cross-slide was to calculagelimit
chip widthb,e,and to create the stability lobe diagram in
he machining processes of grooving (machininguin

irection) and longitudinal turning (machining -
direction) while both operations do not occur
simultaneously. To establish them, it is necesdary
determine the appropriate dynamic compliangés)ey =
u, w, in the given direction depending on the method of
machining.

As stated above, the problems of vibration during
machining can be divided into the description afeéh
basic objects:

1) The process of cutting itself.

2) The description of the mechanical system — machine
tool or machine group.

3) Description of the drive, i.e., the engine itseltlats
control.

In the first case it was used the knowledge coathin
primarily in [2], and which are briefly mentioned the
previous Chapter Il. Here are two parameters thathe
basis of assumptions, were considered for constaats
had to be put into the resulting simulation modéiese
are:

- p=225° cutting angle,
- Co=2-1GNm? cutting force constant.

A cross slide mathematical modek generally
expressed in equation (12), sely. 5. These equations
were compiled based on the following assumptions.

This is a spatial system of 24 perfectly rigid hkesdi

other words, there is a linear approximation of theWithout considering the frame 1) and 4 flexibledtes —

appropriate transfer function.

C. The natural frequency of the coupled mech. system

a console ofJ andW axes and a slide & andW axes.
Between the bodies there were defined kinematics pai
such a way so that the analyzed mechanical systéme

If the coupled mechanical system is generallyof redundant constraints.

expressed in a system of equations of motion irrimat
form:
Md(t)+Da(t)+Kalt) =1 t), (22)

it can be solved af(t) = 0 the problem of eigenvalues,
which is given im-dimensional space by the expression:

def’M + 1D +K )= 0. (23)

Roots 4; of the characteristic equation (23) are the

eigenvalues of the system. Those can be complexedu
in pairs:

A=-a+jB, AN=-a,-j8, i=12..m

or real:

A =-a,,

i=2m+12m+ 2...,n.

W axis console seating to the frame, ball screw stipp
ball screw nut and the ball screw itself of botlesxvere
considered as flexible. Their compliance was deffibg
stiffness as to TABLE |. Stiffness of both ball ®ass is
given by the ball screw nut distance from the batew
support. These are the following:

ly =125mm lw=140mm
Both ball screws are overhung.

TABLE 1.
STIFFNESS OF FLEXIBLE ELEMENTS

Unit U-axis | W-axis
Torsion stiffness of the coupling Nfrad'] 825 825
Screw support stiffness iMmY | 450 450
Nut axial stiffness 1NmY] | 410 410
Screw longitudinal stiffness foNmY | 688 614
Screw torsion stiffness Nmrad’] | 17620 | 15730
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Fig. 5. Cross slide model.

The damping of these elements was selecte@ points in each functional area of each from tbeethil

proportional to their stiffness in the simulatiorodel,
i.e.
dU,W = 251dskU'W
in the case of longitudinal stiffness and
dtU,W = 2.5'10'ak(UYW
in the case of torsion stiffness.

slides ofU andW machining axes. This gives a total of
2x24 force relations between two pairs of bodiesnid
were distributed evenly in such a way so that the
appropriate pairs of points can lie always opposdeh
other in the normal to the functional surfaces loé¢ t
groove.

Oil viscosity was estimated at 25@Pas and the

The deformation field of the flexible bodies wasnormal clearance on one side of the groovemhpwhile
approximated with deformation modes, see [3]. liais these values correspond to the specific damping

linear combination of static wave shapes of theytibat
respect the boundary conditions and the naturabtidns

coefficient § in a size of 5-1 Nsm®. Then, damping
coefficientsb, of one damper for each of the functional

of the given flexible body. The modes of individual surfaces of the dovetail slide of andW machining axes
elements were established on the basis of the nafdel can be determined as follows:

the particular body, created by using the FEM. Tigto

those modes, there were determined further genedali

mass matrixM and stiffness matriXK of the given

flexible body whose dimension was acceptable far th
purposes of subsequent calculations already. Dampi
matrix D of the flexible body was defined on the basis of

modal damping coefficients. That one was introduced

by means of damping rathy that expresses the ratio®f
modal damping coefficient in relation tg® critical

damping of the given mode of the appropriate pdabl

body. The coefficients of proportional damping and

b, :l—lzdl,,d,,, v =UhUsWhWs,  (25)
in which U andW indices stand for belonging td and
axes andh and sindices express the horizontal and
inclined functional surface of the dovetail slidowing
length I, and widthd, of the contact surfaces of the
dovetail slide groove, damping coefficieris of linear
dampers were determined and which are given in
TABLE Il

damping ratio were verified with respect to the
. . : TABLE III.
experimentally determined modal damping of the ratu DAMPING COEFFICIENTS OF LINEAR DAMPERS
wave shapes with the real mechanical system. -
1, [mn] d, [mn b, 10 [Nsm]
U 200 1503 21
PROPORTIONAL DAMPING OF THE OWN SHAPES OF PLIABLE BODIE . :
wlnh 304 40.30 5.1
bri [%] s 304 23.54 3.0
W axis console 10
Wais slide #) axis console 25 The resulting simulation model was characterized by
U axis slide 20

The dovetail slides of the cross slide were model
through the interaction of two bodies. It is ensuby the
action of coupling forces as linear dampers with
damping coefficients. The origin of forces is spreser

e

108 DOF.

g |n the model of feed drive, there were substituttesl
numerical values of the relevant parameters andiwhi
are given in TABLE IV.
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TABLE IV.
DRIVE PARAMETERS

Unit Value
pp — Number of pole pairs [-] 3
R, — Electrical resistance of one phase Q[ 15
Ls— Inductance of one phase mH 13.3
Ke — Motor voltage constant VFad] 0.4444
Kt — Motor torque constant NmA' | 0.4054
r, — Current controller proportional component  VA[] 0.8
T, — Current controller time integration constant g [ 0.004
r,, — Speed controller proportional component  Asrad’] 0.75
T, — Speed controller time integration constant ~ g] [ 0.05
r, — Position regulator proportional component  s'[ 5

VI. SIMULATION RESULTS

At first, the mathematical model of the cross shazs
verified on the basis of measured natural frequenoh a
real machine installation. By comparing the valads
calculated and measured natural frequencies, a gaid

In the next step, the mathematical model was ‘eetifi
with experimentally determined transfer functiorfsao
real mechanical system. In this case, it is thersmwf
inertances in the given direction. As an inertatibiis
called the transfer function between the Laplacages
of cutting force and the acceleration of a toolugro

In the point of acting of cutting forces, the fregay
variable course of harmonic force acts in the appate
direction according to the following equation:

l:u,v,w = A: Sin(ﬂotz), A: =50N, fO =400Hz (26)

To determine inertance, it is necessary to know the
progress of acceleration at the site. Then, bathads are
converted through Fourier transformation into the
frequency domain and with their division, the apprate
course is determined. IRig. 6 up to Fig. 8, there is
shown the course of real and imaginary componehts o

compliance between those variables is apparent, sé@e inertances of the cross slide provided both by
TABLE V. Since according to the measurement thedthi measurements and calculations on a mathematicatimod

mode dominates, this model was not further verified Of this mechanical system further then.
terms of damping due to modal damping 1 of natural By comparing the courses of inertances determined b

oscillation shape.

calculating in different directions with the measdiones,
a very similar character of the dynamic propertiéshe
mathematical model of the cross slide with a ré@ct is

specify the submodel of damping caused mainly with

2000.0

TABLE V.
NATURAL FREQUENCIES obvious. For its further refinement it is necesdarpetter
Shape Measured Measured modal Calculated) Calculated modal ! . & Lau 1
PE f[HZ damping[%] fo [HZ] damping [%] passive resistances in the dovetail slide, whick aa
1 118.0 238 118.6 1.4 significant influence on the courses of inertances.
2 157.0 2.6 160.0 2.6
3 260.0 2.6 252.0 2.6
0.25
1 Measured real inertance component
027 Calculated real inertance component
0.15 1
0.1
g 0.05
E ool
— 00
2 WYY ~
T -0.05
x 4
-0.1 1
-0.15 1
02 ; i i
0.0 500.0 1000.0 1500.0
f[HZ]
0.5

Iminy [MVNS7]

Measured imaginary inertance component
Calculated imaginary inertance component

0.0 500.0

1000.0 1500.0

f[HZ)

2000.0

Fig. 6. Real and imaginary inertance component-rdirection.
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0.25
i Measured real inertance component
021 Calculated real inertance component
0.15 4

Relny [M/NS]
—
e

RR A R A

0.1 T T T
0.0 500.0 1000.0 1500.0 2000.0
f[HZ]
0.35
b Measured imaginary inertance component
0.3 Calculated imaginary inertance component
0.25 1
—0.15
> J
£
E 0.1
0.05 1
0.0
-0.05 : : :
0.0 500.0 1000.0 1500.0 2000.0
f[HZ]
Fig. 7. Real and imaginary inertance component-rdirection.
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& 011
2 i
E 0.0 ﬂ\]\kl\
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5 i
X 024
0.3
1 Measured real inertance component
041 Calculated real inertance component
05 ; ‘ ‘
0.0 500.0 1000.0 1500.0 2000.0
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1.25
Measured imaginary inertance component
1 Calculated imaginary inertance component
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Y ]
E
= 0.625 -
z
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E i
0.3125 1
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0.0 500.0 1000.0 1500.0 2000.0
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Fig. 8. Real and imaginary inertance componenmt hdirection.
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Fig. 9. Lobe diagram in the machining process obuing.

By comparing the course of inertances determined by The course of transfer functions of the analyzed
calculations in different directions with the measli mechanical system is highly dependent on the submod

ones, a very similar character of the dynamic festuwf
the mathematical model of the cross slide with rinel

of damping - above all, on the damping in the daiet
slides of the cross slide, i.e., on passive resigts The

object is obvious. For its further refinement it iscourse of transfer functions is not significantgnsitive
necessary to better specify the submodel of damping the size of the specific damping coefficiént

caused mainly by passive resistances in the dowstitie

that has a significant influence on the course of _

inertances.
A sample of the speed stability diagram of groovisg

shown inFig. 9. The diagram was designed in accordance .~

with the procedure referred to in Paragraph Il. Eer
formation, transfer functions determined on theidas
calculations on a mathematical model of the crdiske s
were used. The theoretical value of the chip mimmu
limit width achieves the siz®memn = 18.9 mm The
stable area of cutting conditions is highlightedthwi

hatching.

VII. CONCLUSION

Creating a mathematical model of the cross slida as
coupled mechanical system with flexible links amalr
constraints are not an entirely trivial matter. &splly in
the case of the dynamic properties of the dovstaie it
is important to realize that this is a non-linegnamic
system. In order to take into account the dynami
properties of the real system it is necessary &ater a
relatively detailed computational model which leddsa
large number of degrees of freedom and often shows
nonlinear character of dynamic behavior as well.

It was selected such a procedure of the creaticheof
linked system of the cross slide when it is a cositfmn
of abstract dynamic subsystems with causal oriemtat
input — output. This assembly is very simple beeahe

outputs of one model are the inputs of another model5]

Such a model of the related mechanical system ean
solved in both time domain and frequency domain.

The shape of Lobe diagrams depends on:

Cutting force constar@,,

The direction of cutting forcg,

The course of the oriented dynamic compliance
of the mechanical system.

To create Lobe diagrams, it is therefore necessary
identify the internal damping of the system and the
damping due to the effect of passive resistancethen
given system.
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