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Abstract—The paper deals with a mathematical modelling The task will be discussed for the conventionaltidn
of the three-phase Permanent Magnet Synchronous Mots ~ approach based on the vector control with a cascade
(PMSM) and their model-based control. These motorsra  of PI controllers and for an advanced control appho
used in drives of robots and machine tools. The cetfuction ~ based on the Generalized Predictive Control (GPC)
of their mathematical model is discussed here withespect  [1], [4], [6].

to a model-based control design. The model is compess The cascade configuration means set of autonombus P
via mathematical-physical analysis. The analysis isutlined controllers. where mutual relations are externsiudban-

in the main theoretical points. As a promising modebased o5 The s'etting of PI controllers is limited oaly several
approach, the predictive control is explained. It epresents  ¢-vic constants. Their fixed configuration does give

just a promising alternative to the standard solutbn based any space for some possible improvements or e.difimo

on the vector cascade control. cations solving further control requirements. Oe tither
g_and, the GPC is investigated as a general, sifigplible
alternative, which can solve both speed and cutoants
together with the space for solution of additioreajuire-
ments on the control.

| INTRODUCTION ‘The paper is organized as follows. The sectioredls!
' with a suitable mathematical-physical model for toa-
Synchronous motors with a three-phase stator windintrol design. The section Il discusses the modediifiea-
and a rotor with permanent magnets (Alternate @urre tion and related assumptions for the predictivetrabn
AC motors) belong to the latest generation of nm®tor design. The section IV briefly describes the cotioeml
They are applied as drives to machine tools andtsob loop schema of the vector control. The section Rceons
Unlike Direct Current (DC) /brushes/ motors andcitie  with the main points of the GPC design. In the isact
cally Commuted (EC) /DC brushless/ motors, the Berm there is a derivation of equations of the predittio
nent Magnet Synchronous Motors (PMSM) (Fig. 1) mayand explanation of the square-root minimizing pcatre
be configured as linear motors, which nowadays comef the quadratic criterion. The generation of cohntr
in use in robotic applications as well. actions as a result of the minimization is discdsse
The motors work on the princip|e of Simu|tane0u5The section VI demonstrates the behaviour of thhwveo-

control of amplitude and frequency of all threentiral ~ tional vector control and the model predictive coht
harmonic currents with the Pulse-Width-ModulationPy & comparative example.

(PWM). The stator of a three-phase AC motor reprisse
three sinusoidally distributed windings with axes-d
placed by 120°. When the windings are excited by ba
anced three-phase sinusoidal currents, the comkiffiect

is equivalent to a single sinusoidally distribuigthding
excited by a constant current and rotating at tiaors
frequency. The rotor magnetic field is suppliedggyma-
nent magnets instead of electromagnets [6].

In this paper, the mathematical modelling of theSh\/
drives will be explained respecting a specific niduesed
control design. Construction of the model will arfsom
the mathematical physical analysis and will be ghow
in standard component forms and complex plane acesp
in different coordinate systems simplified contiekign.

From the control point of view, there are three imai
tasks: position control, speed control and cur(artjue)
control. The tasks are closely related to a cortouifi-
guration or control loops. An outer loop is the ipos A c. B windings
loop, a middle loop is the speed loop and an ialdoop
is the current loop.

This paper will focus on the speed control taskictvh Fig. 1. Schgmatic cross section of PM Synchronous Motor
will be studied in the illustrative examples. Cansently, with pole pair number p = 3 and pole number pp(= &p)
the speed and current loops will be investigated.

Keywords—Permanent magnet synchronous motor, math
matical modelling, discrete predictive control, tistep explicit
control law, square-root optimization.
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[I. CONTROL-ORIENTED MODEL OFPMSMDRIVES B. Initial Physical Descriptrion

Mathematical-physical model of the PMSM drives is Let the system of the equations describing the ipalys
important both for the outline of the conventionattor  basis of the PMSM begin by an equation of statorect
control [3], [6] and mainly for the model-based troh  equilibrium:
approaches in general. The model serves as a siomula i+ +i_=0 )
model for rapid prototyping of the controllers. Timedel sA ' sB ' lsc T
of permanent magnet synchronous motors arises froghq analogously by an equation of stator voltage
several natural laws and relations. Note, thatftices is equilibrium:
given on the stator part of the motor, where trextet
winding (coils) are built in. From the rotor poiof view, U, +ug,+u,. =0 (2)
only knowledge of magnetic properties of permanent
magnets is necessary.

A. Used Notation

The model covers the relations of the current aoithge  u,,=R iSA+i¢/SA u, =R iSA+i(LS Isat W) (3)
equilibrium and appropriate relations of the vodtatistri- dt dt
bution for individual phases of the three-phaseesgys d d
The model contains a number of parameters. TheiUSB: Riig+—Wq » Uy=Riig+—(Liigu+¢,.) 4)
notation and appropriate units are given as follows dt dt

Further crucial relation is the stator voltage ritisition
expressed by a set of the following equations:

R, - stator resistanceQ] Ohm| Uge = Rsisc+%wsc Uge = Rsisc+%(Lsisc+ch) ®)

L, - stator inductance (surface PM) [H, Henry] where each line belongs to the appropriate indalidu
phase. The equations (1) - (5) express the elethgnetic

¢, - rotor magnetic flux [Wb, Weber] properties of the stator coil winding (Fig. 2).

p - number of pole pairs, pp = 2p - pole number A

B - viscous coefficient of the load [kg?rs']

J - moment of load inertia [kg%h

I, - supply current [A]

U, - supply voltage [V]

in Ipr 1o - CUrrents of individual phasés B, C [A]

U,,, Ug,, U.. - Voltages of individual phasés B, C [V]

I ise - currents in ther — 3 system [A] Fig. 2. Pole permanent magnet field windings for 6 poles

ug, Uy -Vvoltages inthe -4 system [V]

oY The mathematical model in the two-dimensional (2D)
iser Isq - CUrreNts in the —q system [A] space of the three-phase A-B-C system is completed
by the relation of electro-mechanical propertiegregsed
Ugy, Ug, - VOItages in thel —q system [V] by the equation of the torque equilibrium:
n, f - mechanical speed [rpm], frequency [HZ; s I, =31 - Iy =1, -Bw, -1, ©)
n,, f, - electrical speed [rpd frequency [Hz s - Jw, =p1, - Bw, - p1,
@, - mechanical angular speed G0 where 7,, is a motor (driving) torque given by
@, - electrical angular speed [gad] I, :Ep‘%ReU JF-3R42 Q)
J, - mechanical angle position [rad] Bw, is a mechanical loss and, is a load torque.
; - All these quantities follow from the law of the ege
J, - electrical angle position [rgd conservation:
TM ) mOtor dnv'ng torque [Nm] IDel. power = Pmechload + Pcoillosses+ Plosses + Pmechlosses
input iniron (mag.) (8)

T, -loadtorque [Nm] %Rep =1 w +3RJZ+ P, +Bda
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Fig. 4. 2D« - andd - q coordinate systems

Fig. 3. 2D A-B-C ando-/ coordinate systems The axes are connected to the rotating electrontizgne

field of the stator coil winding or rotating rotarth per-
C. Simplifiing Transformations manent magnets. The AC PMSM is a synchronous motor

. . I as it is mentioned directly in its label. Thus, theeed
The equations (1) - (6) constitute the initial miode ; : - .
representation in the fixed 2D three-phase syste of the electromagnetic rotating field is equal gmeed

for individual A, B, C phases. That model can be-si ?L:Irﬁ;n:c#g(r]Sgrc]lcsroportlonally synchronous witk thput

plified both for the simulation and control desigy two

specific transformations. The equations (11) - (23) applying (14) get therfer
The first is forward Clarke transformation (Fig: 3) Ug, =Rgig, + Ls_t s — Ls@,ig, (15)
1 _1 i : d. .
ls, 1 E E _SA 2 uSq:RSISq+LSd_ISq+LSweISd+wM w, (16)
1K 3 Bl k=g O . 1 o
¥ 0 5 5 |[is I8, =5 P W is,~Bw - pr, 7)
Considering the current equilibrium (1), then thans-  D. Derivation of the Transformations in Complex Space
formation can be reduced as follows The indicated transformations in the previous sub-
. . . section can be derived also in a more compact form
lsa =kl 2 0 |lis k:E (10) in the complex space. If the initial equations (1}5)
i 53] | are considered, then the Clarke transformatiorefsed
by means of complex variable as follows:
This transformation converts (3) - (6) from the 2D ,2 .
A-B-C phase system into the 2D- § system. The indi- Ug =Ug, +ug e s +ug e  =ug +ju,  (18)

cated transforming procedure is valid for both eoty

voltage and flux components considering appropriat@ising representation of complex variable as

physical quantities respectively. It representsuctidn i .

of three phases or three appropriate phase ax@ggyinwo e'* =cosg + jsing 19)
o -p axes. The axes are fixed to the stator coordinatt(?1en

system i.e. to the initial A-B-C phase system.

The transformed equations are expressed as follows: u, = Rd., +%(|_ deo TWuo) + IR, +%(Lsisﬂ +Wys))

Uy =Ryis, +Ly i, =4, SN S, (11) 0. 0,
d . Wlth l//Ma = wM COSZ95 1 wMﬁ = wM Slnﬂe (20)
Uy, =Rgig +Ls—ig +¢,, cos@,) J, (12)
dt leads identically to the equations (11) and (12).

§ =32 ; g Analogically, the same situation is at the Parkngra
5. = 2 P (cosd s —sind I, ) ~Beg, = pr, (13) formagon. )I/_et the derivation start from the eqoa$
(1) - (5) again. Then, from the geometrical poihview,
the equations finalized by the Park transformation
with natural inclusion of the Clarke transformatianre
the following:

The second transformation is the forward Park foans
mation shown in Fig. 4:

(1 cosd, sind, | ig,
. = . . (14) R R jlﬂ R 4 _.
] |=Sind, cosd, |y we'* =u,e’ +u, e e’ +u e’ e
= =% i =i
That transformation converts the 2D f system (11) - SU, €7 F Juye (21)

(13) into the 2Dd - q system. Thel - q system unlike the SUgy + jUg,
two fixed a - § axes system is constituted by two rotating _
d - g axes. with e'* =cosd, —jsind, (22)



Transactions on Electrical Engineering, Vol. 2 (3D1No. 4

117

Then, the indicated expression leads to the fodh (2

Usefj&c = R5i5d+Ls%isd_LSa)eiSq
Usq
o d. - (@9
+] (Rsl q+Lsa|Sq+(/lM a)e+LSwe|Sd)

Ug,

which gives identical equations farsq and us, defined
by the equations (15) and (16).

Note, the symbols in the explanation above represents

the resultant necessary input stator voltage segbpli
by a power supply.
E. Resulting Mathematical Model of PMSM drive

The resultant mathematical model consists of twat fi
order differential equations in the current poifitveew

I1l. MODEL MODIFICATION AND ASSUMPTIONS
FORMODEL-BASED CONTROL DESIGN

As was mentioned, the suitable model for the model-
based control design is a model in ttheq coordinate
system (27). In spite of its simplicity, it containwo
nonlinear terms. Thus, for the model based control,
the model (27) has to be linearized, so that tleeliptive
control, a multistep approach, can be realized. fidwe-
linear terms may be linearized as follows:

Wi, 0 w 0 0fig

—Wjig | |—w 0 0 0Ofig,
0 || o o0 00w (29)
0 0o 0 00|r

if the reference state variables are selected #ehes

iy =0,ig, =0, w, =0,7, =0 (30)

Sa

in the rotating reference frame and one secondrorde

differential equation in the rotation angle (angudasition
of the rotating reference frame) point of view:

. d. .
Ugy =Rs|5d+|—sa|5d_|—sa)e|5q (24)
o d . .
uSq_RSISq+LSEISq+LSweISd+wM w, (25)
38 =3 p’y, i ~Bw - pr
e 2 M "Sq e L (26)

The linearization or linearizing decomposition (28jses
from the following idea [8] and specific refererstate:

foxva=foyn foeva = o,

The d-q model (24) - (26) can be expressed justThen, the resulting linearized form is:

in the appropriate state-space like form (27):

i [-= 0 0 07l
dlig|_| 0 & & 0|,
dt| w, 0 35, -& Sl
I, 0 0 0 o]z,
(27)
weiSq L% 0 uSd
+ a)eisd O L_lS uSq
0 0 O
0 0 O

f X y.z) — X=X + 2 -
R = R e R
f(xrer‘Z)_f(xrer‘Zr) _
(z—zr) (z-2r)
|f f(XrYYerr) = O (31)
iSd _7% a)e O 0 iSd
dlin|_-a & ol
dtjw| | 0 3¢, -5 2|l
T, 0 0 0O Oflr,
_i 0 (32)
N 0 & ||Ug
0 0]]ug
|10 O

This model form represents already the usual Siaaee

This model form represents as simple as possibleodel, but with time-variant terms:

the mathematical-physical description suitablesiatula-
tion and simple basis for the model-based congsigh.

The model (27) contains nonlinear elements. Thdly wi
be discussed in section Ill. According to the iadkd
model forms and corresponding transformations is th
section, the usual industrial control, i.e. thecede PI
control, is structured as well. The brief descadpti
of the cascade control will be given in the sectién

Finally, for further explanation, the full state cter

dx(t)
dt

= A () (1) + B, u(t) (33)
A_(t) is a time-variant state-space matrB, is a con-
stant input matrix. The variances @& (t) are given
by the variablery, elements, i.eA_(t) = A (aw.(1)) .

The model (32), as against (27), can be already

lisa isq @ 7]"is assumed to be known from measuredfiscretized by the standard exponential discrétinat

variables ({sagc) @ 7]") including also the angular
position . The angular positios, is not included into
the state vector due to direct relation to the &argpeed:

ds
dt

= (28)

e

procedure to the form:
Xiw TA X TB U, (34)

Y =CXx, (35)
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Speed () Torque (ig,) | Ysa Inverse | S
ay ? Controller ? Controller Park Sinewave
— Flux (iy) |Ysd Transform | u, | Generator
lsar =0 *?_ Controﬁir (d-q»a-f) —=
* sin I
* cos [
i i i
=t Forward le>| Forward |-
Park Clarke |ls
i S Transform isp Transform i
@ (d-g « a-p) [ (a-f « ABC) -

J & a
Sensing

Fig. 5. Speed control of PMSM by vector control (two-stegeade control)

IV. USUAL CASCADEPICONTROL

As was mentioned, the usual industrial control, i.e
the cascade PI control, follows the directly ddsenli way
in section Il. After measurement of individual pbaas
currents and measurement or estimation rotor positi
and rotor speed the currents are transformed siepwi
by the forward Clarke transformation and by thenind
Park transformation into the- q coordinate system. In it,
the main control operation is executed. The designe
control actions d-q voltages) are converted via the
inverse Park transformation back to thef system ¢ - 8
voltages). The control actions in the  system are led
to the Sinewave generator, which generates apjptepri
individual voltage magnitudes for individual A-B-C Y
phases. Itis illustrated in Fig. 5.

That schema of the PSMS speed control consists®f t
interconnected loops. The main (master) loop ipeed
loop. The subsidiary (slave) loop is a current loeglized
as two parallel legs corresponding to the torque flux
control respectively. Each loop or leg containdsatated
PI controller. From the control theory point of wiethis
arrangement represents at least six control paeamet
(gains, time constants), which are usually emgisica
or by simple auto-tuning algorithm set up [9].

Ismax

In specific cases, the Pl control is supplemented

loop| of field weakening

smax

o 1

+
c

by a field weakening to reach the high speed regioe

to increasing the Electro Magnetic Field voltagd &nite
supply voltage [10]. The field weakening is done
by the current - component, which produces a magnetic
flux opposite to the permanent magnet flux, see Bi
Note that the output of the current controller (ent
component in they axis) must be limited according to
the rising current component in thlieaxis with respect
to maximum allowed value of the current magnitude.

o
&

7
Usq,

uonewojsuel]
Jed
UoneWIojSuelL
NIe|D

L_ddt |

Fig. 6. Speed control of PMSM with field weakening loop.

<

- H T u U
we e s Generalized > Inverse |3
>| Predictive Park Sinewave
—
Controller | Ysd (T;?;)S)f:_r;) ﬁ Generator
sin 5,
cos [
i i _
= Forward <i Forward '&
: Park Clarke 'ge
= Transform isp Transform i
) (d- « a-f3) [€—] (-3 « ABC) [—

J &
Sensing

Fig. 7. Speed control of PMSM by Generalized Predictivet@bn
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V. PREDICTIVE CONTROL R,u= ¢,

The Predictive Control is a flexible and powerful u=(R,)c, (42)
control approach [11]. Its illustrative schema &or appli-
cation to the speed control of the PMSM drives issince a matrixR; is upper triangle, then the control
in Fig. 7. The basis of the Predictive control isnani- s given directly by the back-run procedure. Thaidated
mization of a quadratic criterion (36), in whictetfuture  way represents a pure solution, which can be reache
system outputs are substituted by their predict8%®  on-line.
expressed by the model given by (34) and (3521, Different, the most related optimization way at @GeC
o R A is a quadratic programming, i.e. optimization oé thb-
minJ = ”E}n‘]T‘]‘nE}”[||QV(y_W)||2 +1QuulFy (36 jective function (43) by algorithms of the quadrati
programming [4]:

CA, CB -0 ] 1 ;
§=f+Gu,f=| i |x,G=| : - i |@)  MAFW=mn{Zu(GQG+Q)ux(f-w) Gu}
—_— -
CA" CA'*B ... CB H 9
wherey, w andu are vectors of the predictions (future - min{luTH u+g'u}, Au<b (43)
u 2 ’ B

predicted system outputs), references and conttare

(§yst<?m meuts)T for a given pr(:.-dlctlon horizaw; . The quadratic programming can solve equality ared in
Y=V Vs WEIW Wi I U= U U0l quality constrains as it is indicated in (43). Howe
and Qy and Q. are the weighting control parameters:for the PMSM drives, it is a quite time-consumin@yw
output and input matrix penalizations. The preditsi apart from the pre-computed offline implementatifi®y.
VY. i appropriate time instants of the predictionFinally, the simplest way, possibly tailored forstfady-

horizon can be expressed recurrently by the mogighe namic systems as the PMSM drive are, is a diremtche
tions (34) and (35) according to the formula (37). of local minimum of the quadratic cost function gluatic
; : criterion). This way can lead to explicit forms adntrol
The forms of the quadratic cost function as well a ! :
equations of the predictions depend on control irequ ?aws, which can be for the PMSM drives pre-computed

; . C off-line. Then, during the real-time (on-line) cooit
[ﬁ?ts given by user or considered application [HQ]. control actions are determined by selection of ppra

e L . priate control law corresponding to the topicaltesta
The minimization of the criterion (36) can be pded  of the system. In case of the PMSM drive contiu, $e-
by several ways. The powerful one is a way vialat®m  |ected parameter or state variable is angular itgl¢see
based on the least squares [7] applied to the @@eb model (32)). The described way leads to the folmwi

equation system: computation form
3=|Qy O y-wi_|QyG Qy (w-f) u=(G'Q,G+Q,)"'G'Q,, (w-f) (44)
- - u- 38)
0 Qul u Qu 0 ( . N
and c_:orrespondmg exphcn control law of the camst
A b velocity-dependent gains:
J — mln = A u- b = O uk = kak - kxxk (45)
Au= b Q7 VI. COMPARATIVE EXAMPLE

39 : . . . -
Q"Au=Q"b (39) In this section, there is a brief description ot aom-
parative example of the data from a real experiment

where Q is an orthogonal matrix, which rearrangedand data obtained by simulation. The real experimers
the matrix A into the upper right triangle matrik or  realized on the Siemens PMSM drive with the typsigie
R, respectively as it is indicated: natlon: 1FK7022'5A'_<'1LG_O 91
In Fig. 8, there is time history of the real measudata
R u=-=ec (40)  from the real experiment. In Fig. 9, there is tihistory
of the simulation data. The comparative simulatisn
provided by the mathematical model from section II.
A u Ri |u The model parameters of the PMSM drive were taken
from a manual [9] for the motor mentioned above.
= The figures show similar courses of the correspandi
0 time histories of physical quantities: mechaniqeedcy,
(41) phase voltagessagc)and _phase' cur_ren’t§q(Bc, The obv_i-
ous smoothness of the simulation is caused by derisg
The vectorc, is a lost vector, whose Euclidean nomhis  the motor as ideal system without any disturbance.
equal value of the square rodt (i.e.J = ¢,'c,). To obtain  The both experiments run for a triangular profilehe de-
unknown control actionsl, only the upper part of the sired rotational speed values within the interva@pm.
system (41) is used for final control determinatiam The condition on zero (minimum) currents was ineldid
follows. both in the real experiment and simulation.
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Fig. 9. Speed control of PMSM by Generalized Predictivet@br- time histories of simulation; horizéh= 8, sampling period Ts = 0.000125s

VIl. CONCLUSION
The paper deals with a study of the Predictive @bnt

design for the PMSM drives. Their mathematical nhodeg

was explained and used in the model-based corasig.
The industrial cascade Pl control was briefly ekpdd
as well. The comparative example demonstratesithie s
larity of the industrial realization and model-baskesign.
The Predictive Control is a promising way to opfiei
the drive control with a possibility to considerhet
requirements or drive constraints, which cannosib@ly
solved by conventional control systems.
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