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Abstract— The paper is concerned with the stability analysis
and the control of chaos in a permanent magnet dcride
system. The stability analysis is based on the eigetiues of
the Jacobian matrix of the Poincare Map Function (MF).
Using the auxiliary state vector, the Jacobian maitk can be
determined without the derivation of the PMF. A
compensating ramp signal is used to avoid bifurcatn. The
slope of the ramp signal is also determined by thauxiliary
state vector. The results are verified by computer

constant switching instants depending on stateabks
even after the small excursion of the state vagmlfiom
the steady state.

It is important to note that in linear systems tiyetbe
loss of stability implies that the state divergesghaut
limit [5]. However in nonlinear systems the outcooiea
stability loss, or in other words bifurcation, doest lead
to an unlimited explosion of the variables.

simulations in the time domain.
the

To compensate the instabilities and to expand
stable operation ranges in nonlinear system aretspat
in power electronics [4]-[11]. In [4] a sinusoidagnal is
added to the speed reference signal to extend the
parameter range for stable period-1 operation. e t

| INTRODUCTION paper, similar to [9] a periodic ramp signal is dis€he

Large number of power electronic circuits belongs t slope of the ramp signal is determined by using the
the variable structure piecewise-linear systemseyTh auxiliary state vector.
change their structure after each switching and the
sequence of structures succeeds each other patipdic
periodic steady-state. Assuming ideal componeri#seth  The schematic block diagram of the two-quadrant
structures can be modeled by time-invariant limeadels  p,ck-chopper-fed permanent magnet DC motor drive is
therefore the systems are piecewise-linear. Theave snown in Fig. 1. The speed and current controlaigcan

systems are nonlinear due to the dependence of th@ expressed as (the ramp signal with dotted love is
switching instants on state and input variablesn@ome  gmjtted)

other cases due to saturations or other nonlinesrit

Keywords—DC  machines, Nonlinear

Dynamics

Speed Control,

II.  CURRENTCONTROLLED DC DRIVE SYSTEM

The paper is concerned with the stability analgsid K
the control of chaos in a commonly used DC drivatesy, y(t) =K, (Q _Q)+T_pj(Qref —Q)dt (1)
the buck-chopper-fed two-quadrant permanent-magnet ) i
DC motor drive (Fig.1). Chan et. al. showed in {1, u(t) = Ai(t) @)
this drive system using a proportional speed cdatro o ,
generally exhibit chaotic behavior. In this paperPh  Wherei(t) is the armature current of the motQX({) is the
controller is applied to eliminate the steady-stater. In ~ SPeed of the rotoiQ is the reference speed, is the
[4] the Filippov's-method is used to analyze thecurrent gainK; is the proportional gain and, is the
instabilites of a DC motor drive with a full-bride integral time constant of the PI controller.
converter. Similar to [1] also proportional speedtcoller
is used in [4].

The stability study used in the paper is basedhen t
eigenvalues of the Jacobian matrix of the Poindsap
Function (PMF) determined at a fixed point of tigetem
[2]. From the physical viewpoint, it is equivaldntstudy
the behavior of the periodic steady-state trajgctdrthe
system in the state space when it is forced toeldhe
trajectory to a new orbit by a small deviation frahe
original trajectory.

In the present paper the Jacobian matrix is deteani
without the derivation of the PMF itself by applgithe
auxiliary state vector proposed in [3]. The methmses
small differences of state vectors compared torthei
steady-state values at the start and end of pedndsat
the switching instant. The Jacobian matrix is otsdi
directly from the relations among the small diffezes of
the state vectors. The auxiliary state vector pvesethe

Figure 1. Current controlled DC drive

Both u(t) andy(t) are fed into a comparator. Its output
signal is connected to the reset and the clockepwith
periodT, to the set terminal of th@Slatch. Both power
switches are controlled by this RS latch. Oncdateh is
set by the clock pulse, S1 is turned on and Sfriset
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off until the u(t) signal exceedg(t) and then the RS latch
is reset. The switch S1 remains open until thevalrof
the next clock pulse, while S2 is on.

The DC drive is a variable-structure piecewisedine
system. After each switch, another linear circuit
arrangement emerges and the sequence of lineat€il®  regular matrix
repeated in the nexf, period. Fig.2 shows the time
sequence of structure changes. The duration afteteul a
and 2 is; andt,=T,-7, respectively. M .(1)=A, &,— (1) _|=J (©®)

A (1) P
x()=e" x,+[e7 d9B g(1)=W (1), +M (T)B g(t)
0

®)

WhereV_\/]_ is the weighting or base matrix. Whe‘ré‘\nj is a

Wherel= is the identity matrix with the same size@}‘.

th . th .
K period (k+1)" period For singularéj matrix the Taylor series of the matrix

exponential function can be used to calculate titegral
[2].
S10n,S2off |51 0f,52 onf S10n,S2 off \S10ff,S2 of In steady state, the values of the state vectieagtart

T of (k+1)" period and at the end &f' period denoted by
e o | » [ = | af -
1 suffix sande, respectively are equal

structure 1 structure 2| structure 1 structure 2

T, T,

X =X 7
Figure 2. Sequence of structures in steady-state S(k+1)ts = Zk2e ( )

The switching condition according to Fig.1 Suffix 1 and2 stand for structure 1 and 2, respectively.

A. Open-Loop operation

When theS switch is turned on and off directly by the
aPpen loop control independently on the state véetaand
therefore the values andz,=T,-r; are preset, the periodic
state of the converter can be calculated as follows

(1) =u(ty) (3)

As the switching condition depends on the extern
speed reference and the internal state vector Gerive
exhibits nonlinear dynamics.

The value of the state vector at the end of straciu

. MATHEMATICAL BACKGROUND in thek" period from (5)
The behaviour of the DC drive between two switching
instants can be modelled with the general stateespa e =W (T )Xy + M (1B, 9(1) = X, (8)
representation:
The value of the state vector at the end of stracdu
V() =X(t) = A, X0 + B, 9(1) (@

Xy 2e :V=V2(T2 X 1e +ﬂ1(1’1 )Elg(t) = X(k+1 s 9)
wherej=1,2 is the structure numbex’ =[Q i] is the
state vector with state variable$t) is the velocity vector, The X, =X1p = X(rpe = X

g'= [Toas Vi) is the input vectorA, andB. are the  soution for knowrr, andr,=T,-7,
“B/J K, /J
-Ke/l, -RTL, ' Xs= |Ic_V:VZ(TZ)V:vl(Tl)JﬂMz(Tz)ll(rl)élg-'-lz(b)gzgl

-1/J 0 -1/3 0 (10
B. = . B = .
=1 0 1/L,| =2 0 0

B. Closed-Loop operation

HereV,, is the input voltageT..q is the loading torqued In closed-loop operation is not known, however in
is the viscous damping}, is the inertiaKe is the back- steady-state both (3) and (10) hold true. Furtheentioe
EMF constantKs is the torque constar®, andL, is the  start and the end value of the output of the Ptroder
armature resistance and inductance, respectively. must be the samg, = vy, .

Let timez elapse from the last switching instant. The  For determining; first X . is calculated from (10) by
behaviour of the system in time domain between twa ’ s

switching instants can be described by the solutio). an initially selected;. Then from (1):
Starting the system from=x(0) and assuming constant . K,
input vector the time function of the state-vedsor D(1,)=VYe —¥s = ~K ki (X, = X) +T—(00refTr -

is the steady state

e

parameter matrix A=A ={



Transactions on Electrical Engineering, Vol. 1 (2DINo. 1 21

steady-state space vector Wmh(kle(Tl) at the end of
the structure 1 in periot (Fig.3). Simultaneously the
switching instant; will change byAz as well. The actual
where Iﬁ :[1 O] , ﬁ(r)=V=\lj(r)1j +MJ(T)E].E , state vector at the switching instantj;:le(rﬁmk ).

X, =X, és X, =X(1,). In steady-stateX , - X _is A% is changing from period to period.

zero and it can be omitted. Like(t, ) will not be zero The calculation of the Jacobian matrix is greatly

at the first estimation of;. The value ofr; can be facilitated by the introduction of an auxiliary &tavector

determined by an iterative calculation using sué&ab x' (t,) and its changedx,,.(T,) instead of using
mathematical software. Tkzs

(e [yt )

k2s
lie(T +At, ) and Axklﬁ(t +At, ) (see Fig.3) [3].

IV. STABILITY ANALYSIS The auxiliary state vector points to a virtual iaditstate

Ds(r1) where starting the systematfrom, the dynamics
of the structure 2 would drive the trajectory aloting

same orbit as the perturbed one afterAz,.

The relation among the small deviations of theestat

vector around the fixed pointX, at the start of
consecutive periods is .
liary Dy(x,) -V, AT,
auxili 3ty
state vector DZ(T’+ATk)
11s (12 change

AX =] Ax,, . =J“Ax...  (12)  change[ar AN NV AT
S(els =TSk =kTE structure 2

AK*k1,e(T1+ATk)/

where Ax,, . is the initial deviation of the perturbed state

=l1s Perturbed D(r)
vector from X and J is the Jacobian matrix. The trajectory K
stability criteria is thathe absolute value of the largest A Periodic
eigenvalues off  has to be less than one. structure 1=/ trajectory

Figure 3. Auxiliary state vector change
A. Extended System Matrixes

The integration property of the controller involvas
new state variable. The output of the controlleaasew
state variable has to be included in the stateovect (1,)= W (T )AX,

*T T Xite
X = lg yJ. According to (1)

The state vector changerat{between poinD; andD)

(14)

kils

The commutation between the two structures takes
place atr;+Ar at the pointD,. The distance betweddy

. K . .
y(t)=-K,Q +_|_—')(Qref -Q) (13) andD; is v, At,, wherev, is the velocity of the state
i vector atr; in the structurel. After the switching the

The extended system matrix are velocity at the start of the structuPeis \_/*25. Due to the

- . linearity of the structures the new trajectory che
g9 =b Q ) projected backward in time from timg+Az, to z5. In
A 0 other words the trajectory will start from the pol;
X =] rather than the poirid, by extending the new trajectory at
A= 0 the start of the structure 2 toward the negative tin the
Ko(B/J-1/T)) -K,K:/J 0 direction of the velocity vectorv, . The pointD; is
B i 0 reached this way at the distaneg;smk from D,. The
B = 0 auxiliary state vector change is obtained betwegmand
Kp/J 0 K, /T, D. Now the applying Ax,,(t,) instead of
" . . AX, (T, +At, ) the trajectory will start in the structure
Later on the marking denotes vectors and matrices in -"15( ) J y
the extended space. 2 at the same; mstant_as in the case of the periodic
trajectory prior perturbation.
B. Auxiliarly State Vector From Fig.3 the auxiliary state vector change:

The calculation of the Jacobian matrix is carried o
by following the effects of a small initial pertaton. The . . . .
deviation from the periodic trajectory duringaperiod is DX, 55(T1) = BXy1(Ty )+ (Vi V50 AT, (15
calculated by taking into consideration the chaofythe
switching instance and its effect as well. As ailtesf an  where the velocities of the state vectors can hrileded
initial perturbation the state vector deviates frehe from (4). By using the auxiliary state vectar, are taken
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into consideration and we are permitted to wseand
=Tz as well asW (1) andW (T,).

C. Calculation of Az,

According to (3) the switching condition for period
trajectory is

Ky X (1)~ AK; X (1,)=0 (16)
and for perturbed trajectory
Iﬁ*sT(_X* (Tl ) +A§L15(T1 +At, )i
= AKS (X (1) + DX (T, +AT, ) =0 (17)

where k' =[0 1 0] and kK" =[0 0 1] . From
triangleDD;D, (Fig. 3) follows

*

Al(*kle(-[l-’-ATk ):Al(kle(-[l)+\_/*1,eATk (18)
Subtracting (16) from (17) and

AX, 1(Ty +AT1, ) into the resultAz,can be expressed

(k3 —AK, )

At =—=_——=2 T AX, (T,) (19)
(Ailsz _IfsT )\_ll,e e
Substituting Az, from here into (15)
\ (Vi — Vo (K —AKT) .
DX, (T,)=(1+=E =222="° _ =2 Ax,, (1,)=
_k25( 1) (= AKZT\_/].E—K;—\_/J_E ) —le( 1)
= MAX, 1, (T,) (20)

D. Jacobian matrix
Applying the previous equations

DX ans = BXype =W (T5)AX 06 =W (T, )MAX, 1 (T1) =

*

=W (T, MW (T,)AX,,, = J AX (21)

K —=kls

substituting

V. CONTROL OFCHAOS

The DC drive has a very colorful response depending
on its parameters (see next section). Its behaaarbe
chaotic from the stable period-1 operation through
bifurcation cascade. By using the stability analysethod
derived in previous section the controller paramsee,,

Ti, AY) can be calculated to maintain a stable operatton
the rated parameters. However, sudden changesein th
input signals (like loading torque, reference sigaiad
input voltage) can result that the largest eigarealf J ‘

leaves the unit circle resulting an unstable opmrat

To widen the stable domain a periodic ramp signal
with periodT, synchronized to clock pulse is added to the
current loop (see Fig.1 dotted line). By properjested
slope of the signal the DC drive can be stabl&éwthole
operating range.

The equation of the current loop during dnegeriod
is changed to

W) = Ai(T)+m, — (23

r

This change has to be taken into consideratiod6y (
and (17) to calculatlz, which results thati will be

(Vi =V, )(Ks —AK,)

T x ST m

T _ T c
A1|£2 \_/le l_(3 \_/le+

r

Mo=(L+

) (24)

It is obvious that by increasimy. the eigenvalues of
the Jacobian matrix decrease provided U_Va;t(rl) and

V_\/;(rz) are the same matrices (see (22)). For a given

operation range of the DC drive the required vaitien
to keep the largest eigenvalue of the Jacobianimiatr
the unit circle can be calculated.

VI. SIMULATION RESULTS

To illustrate the stability calculation and the huat of
control of chaos computer simulation were carriadin
MATLAB/Simulink environment. The rated simulation
parameters wer8 = 0.000275Nm/rad/s,J = 0.000557
Nmg, Ke = 0.1324 V/rad/s, Ky = 0.1324 Nm/A, R, =
2.9Q, L,= 0.0537H, Vj;= 60V, Tjgag= 0.39 Nm, A =1,
Kp=2,Ti= 0.1's,Q.= 105rad/s and the period of clock
signal isT,= 0.002s.

The selected switching frequency is quite low compa
to the values applied in practical dc drives. Téason of
the selected switching frequency is to emphasiz th
nonlinear behavior of the speed control loop.

Figure 4 shows the response of the drive system nea

For a givenr; andz=T-z, value the Jacobian matrix different K, value. Figure 4a shows the stable period-1

can be calculated from

3, =W ()MW (1)

(22)

orbit. The absolute value of the largest eigenvahfethe
Jacobian matrix now is1=0.98. By increasing the
proportional gain the largest eigenvalue of theoBamn
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matrix leaves the unit circle. Figure 4b and c shaw
unstable period-2 and period-4 orbit, whirl.23 and

plotting these sampled valugz=Q (kT;) ori,=i(kT,) as a
function of the bifurcation parameter. Figure 5al dn

1.56 respectively. ForK,=5.2 the system is in chaos shows the bifurcation diagram of the drive when the
(Fig.4d., 1=1.78) and the speed time function never bifurcation parameter i, and Vi, respectively. The

repeats itself.

An overall picture of the behavior of a nonlinegstem is
offered by the bifurcation diagram showing the oasi
states and the sudden changes or bifurcations ef
system due to the variation of thebifurcation pagtan
For this case the bifurcation diagram is obtaingd
sampling the spee@ (t) and the currenit) signal at the
start of every switching period in “steady statgida

105.1
105.05

sampled Q. of the time functions shown in Fig.4 are
denoted by a circle in Fig.5a.

As it can be seen on the simulation results - enlik
tHinear systems - changes in the variables can tresul
different responses. To maintain stable periodatesin
b the whole operation range a ramp signal is addeti€o
current control loop as it was mentioned inghevious

105.1

106.1

105.05 7 10505

7 e z =
o 3 3 B 105
B 105 £, 105 £ 105 £ 105,05
G 105.95 G 105.95 G 10595 G os9 |

105.9 105.9 105.9 : - ; 105.85 )

05 052 054 056 058 06 0.5 052 054 056 058 0.6 0.5 052 054 056 0.58 06 0.5 052 054 056 058 0.6
t [sec] t [sec] t [sec] t [sec]
4 4
3.5 35
25 | | | | 25 : - 25 . : : : 25 : : :
0.5 052 054 056 0.58 0.6 05 052 054 056 058 0.6 0.5 052 054 056 058 0.6 0.5 052 054 056 058 06
t [sec] t [sec] t [sec] t[sec]
a, K;=2,A=0.98 b, Kp=3,A=1.23 c, K;=4.3, A=1.56 d, K;=5.2,A=1.78
Figure 4. w(t) andi(t) near different load
A<l A>1
4 A<l A>1
4
§ 105.05 o
35 o gf %
o ° = 104.95

Q, [rad/s]
S
<3
°

® oo o

2 25 3 35 4 45 5 55
K,

a, Bifurcation paramete,

25 P P 3
40 42 44 46 48 40 52 54 56 58 60
V.1

40 42 44 46 48 40 52 54 56 58 60

b, Bifurcation paramete;,

Figure 5. Bifurcation diagram foffj,aq () andK;, (b)

55

v “ad!s\

a,m. as a function o¥/;, andTaq

b, m. as a function ofoes andTipad

¢, m; as a function oY, andwes

Figure 6. Required slope value of the ramp signal

section. The operating range of the drive system
selected a3jy,q= 0.2-6 Nm, Vi, = 40-60V, Q= 90-170

isurrent of the drive, whe€,¢; =120 rad/s Tigag = 0.54Nm
andV;, = 50 V. The motor without RC (light grey line)

rad/s. The other parameters of the drive assumet be has a chaotic response with large ripples. Theevafuhe

constant during the operation.

Based on the section V the requined slope of the
ramp signal was determined in the whole operatimge
of the drive (Fig. 6). From the figures it can lmncduded

by selectingm/T,=0.7, the drive system is stable for

changes in the whole operation range.

To illustrate the effect of the ramp compensatilR€)
Fig.7 shows the time functions of the spemd the

largest eigenvalues of the Jacobian matrix=%.89. By
increasing the switching frequency to = 1 kHz, the
ripple both in the speed and the current is reduced
however the response is still chaotic (dark gree,li
2=1.6). By applying RC with slopen/T,=0.7 to keepl. in

the unit circle (black line) near the lower nominal
switching frequency a stable response can be @utain
with the same ripple in the speed and currents highaer
switching frequency.



Transactions on Electrical Engineering, Vol. 1 (2D1No. 1

24

120.2 {withowf RC, I=500 Hz|

120.1
120

Q [rad/s]

119.9
with RC, f.=500 Hz
119.8™
1.2 1.21

| without RC, =1 kHz |
1.22 1.23 1.24
t[sec]

5 without RC, f=500 Hz}|—————
N\

<
[with RC, =500 Hz| [without RC, =1 kHz_]
1.2 1.21 1.22 1.23 1.24
t[sec]

Figure 7. Effect of chaos control loop

VIlI.  CONCLUSIONS

The paper presents the utilization of the auxilstate
vector to determine the stability border of a DGvar
system. The derivation of the Jacobian matrix withthe
Poincaré Map Function is explained.

The unstable and chaotic response of the drivebean
avoided by a ramp signal applied in the currenpldthe

required slope of the ramp signal was determinsod al

with the auxiliary state vector.

The numerical results of the calculations werefiegti
by computer simulations.
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