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Shape Synthesis in Mechanical Design
C. P. Teng, S. Bai, J. Angeles

The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses
what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order
curves 1s usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not
necessarily the most suitable when the designed element must withstand loads that can lead to failure-prone stress concentrations. Indeed, as
mechanical designers have known for a while, stress concentrations occur, first and foremost, by virtue of either dramatic changes in
curvatwre or extremely high values thereof. As an alternative, we propose here the use of smooth curves that can be simply generated using
standard concepts such as non-parametric cubic splines. These curves can be readily used to produce either extruded swrfaces or surfaces of

revolution.
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1 Introduction

The problem of curve synthesis occurs frequently in me-
chanical design [1, 2, 3, 4, 5, 6]. This problem arises whenever
two flat — the case of a surface — or straight — the case of a line —
segments of a machine element are to be joined either to close
an orifice smoothly or to join that segment to the machine
frame. The reason why a smooth transfer is required lies in
the need to prevent stress concentrations.

Mechanical designers over the years have designed ma-
chines with rectangular bores using circular arcs to round the
corners. This is done with two purposes: (2) to avoid stress con-
centrations that would arise due to an inWnite curvature at
the corner, and (i) to ease the machining of the bore. The
problem with circular arcs is that they provide only G!-conti-
nuity. Second-order geometric continuity GQ, on the other hand,
requires that the two curvatures coincide at the blending
point; however, the curvature of the straight segment is zero,
while that of the circular arc is the reciprocal of the radius
of the circle, which is a finite quantity different from zero.
The outcome is that stress concentrations are not eliminated
because of the curvature discontinuity at the point of blending
[7].

In this paper, a methodology is proposed aiming at the
production of G®-continuity at the blending of segments of
two curves. The paper is based on the concept of curve synthe-
sis, as first proposed in [1]. While the forgoing reference
resorts to parametric cubic splines to synthesize geometric
curves, we show in this paper that a geometric curve can also
be synthesized using non-parametric splines, thereby stream-
lining the procedure.

2 Problem statement

First and foremost, a distinction is made between a curve
representing the plot of a function and a geometric curve:
while the slope of the former is bounded, the latter is not;
moreover, a geometric curve can have cusps, can cross itself
and need not be representable by analytic functions. The
paper focuses on geometric curves, while resorting to non-
-parametric cubic splines.

Curve synthesis in this context is defined as: Given two
curve segments I', and I lying in the same plane, find a third
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curve segment I, that blends smoothly with both T', and I at
the blending points A and B, with GQ—continuity.

Notice that we stated the search of a segment, as opposed to
that of the segment, to emphasize that the problem admits mul-
tiple solutions. In fact, the problem admits infinitely many so-
lutions. To pinpoint one particular solution, we must impose
additional conditions. Many are possible, the one that we
adopt here being that the segment sought I', be “as straight as
possible.” What this means is that we want the segment to
have the smallest possible curvature. This requirement makes
sense in design engineering, since a straight segment is the
simplest shape to fabricate and, in the realm of structural
engineering, the least likely to offer high bending moments
if, for example, I', were to be the neutral axis of a beam.
The challenge here is to formulate the synthesis problem in a
standard form, e.g., one that would lead to an optimization
problem.

To this end, we resort to a discretization of the curve. Many
forms of curve discretization are available in the realm of geo-
metric modeling, namely, Bézier curves, cubic splines, B-splines,
non-uniform rational B-splines, or NURBS, and so on [8].
We limit the search to the simplest of these tools, namely,
non-parametric cubic splines.

3 Problem formulation using cubic
splines
In discretizing the problem at hand by means of cubic

splines, we define n + 2 supporting points {P, }g’“, the M point

having Cartesian coordinates Pj(xy, y;). Shown in Fig. 1 is a
sketch of the blending segments I', and I';, by means of
I, with P denoting a generic point of the latter. Alterna-

n+l

tively, points {F; };" are defined by their polar coordinates

Py(py, 0). Henceforth, we define Py = A and P, . = B.

Now, let A(py, 6,) and B(pp, 0p) be the polar coordinates
of the blending points. Moreover, let
0p =04
n+1

and define 6,=0,+kA0, for k=12,...,n+1 with
0,,+1 = 0p, A6 thus being the uniform increment over the po-

AO =
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Fig. 1: Blending of two curve segments with a third one

lar coordinate 6. In defining the polar coordinates of the
blending curve IT';, care must be taken to choose the origin
conveniently, so as to avoid more than one point with the
same O-coordinate, which would render the discretization
adopted here invalid. Under these conditions, then we as-
sume that a function p = p(0) exists in the interval [6,, Op].

Further, we define the n+2-dimensional vectors, p, p'and

p", namely,
P:[Po,/)lw-’Pn,PnH]T M
0" = [P0 P P> Pt ] @
0" = [0 P rns Py Pysa]” ©)

Letting p;,(6) be the cubic polynomial between two consec-
utive supporting points P,(py, 0) and P, 1(ppe1, 011), we
have

Pi(O) = A0 = 03)° + By(O ~61)° + Ch(0 —6)) + Dy (4
Ok £6£9k+1, 0<k<n.
By virtue of the GQ-Continuity of non-parametric cubic
splines, a linear relationship between p and p’ exists, namely,
Ap" =6Cp, ®)
where both A and C are nX(n—1) matrices. Further, we re-
call the expressions for the angle y made by the tangent to

the curve with the radius vector, and the curvature, in polar
coordinates:

tany = £, (6)
p
2 ’ 2 ”
+2 -
P :% , 7)
(0 +(p))2
where
dp
r_ , 8
P =40 (8)
dp'
1" — A 9
P =0 )
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Moreover, let £, and k;, denote tan y and k at Py, i.e.,

o =LL, (10)
P
P+ 2P0 = publ

iy =T 2E. PRk (11)

3
2 2\o
(Pi + ()2
That is, t;, =4;,(pg. py) and &, =k(Ph, Pk» P})- Let us now in-
troduce two end-conditions:
lo =ty =tanyy, 4,4 =lp =tanyg, (12)
where y4 and ypg are the known tangent angles at point A and

B of T, and T, respectively, matrices A and C then becoming
square.

A linear relation between p and p” also exist, namely,

Pp' =Qp. (13)
where P and Q are (n + 1) x (n + 2) matrices. Expressions for
all four matrices A, G, P and Q are included in the Appendix.

Hence, slope and curvature values at the unknown sup-
porting points {F,}} of I, can all be expressed as functions
of {p;}] - In formulating the curve-synthesis problem within

the realm of optimum design, we let x be the vector of design of
variables, namely,

x=[p1...pu1" (14)
Notice that
P4 =P0s PB =Pn+l> (15)

which are known, and part of the data. We can now formulate
the curve-synthesis problem at hand as an optimum-design
problem:

IR 9 .
z==— wy ki — min . 16
”21: & B u (16)

Where wy, is the normal weight at the pth supporting point,
whenever one needs to assign different importance to differ-
ent points. We term the weights normal because they obey the
relation

1
D =1 (17)
1

the problem being constrained to obey the GQ-continuity
conditions at the two blending points. Specifically, these con-
straints are,

ko(p, P, P") =Ky, Kky(p,p',p")=kg, (18)
where k4 and kp are the curvature values of curve I', at point A4
and of curve I, at point B, respectively, thereby formulating
an equality constrained optimum-design problem. Further-
more, special cases may call for additional constraints. For ex-
ample, if convexity is to be imposed, then we must add the
inequality constraints

Kk, 20, k=12,...,n. (19)

Once the optimization problem is formulated, a solution
is possible with scientific code available in the market. We
resort to our own Orthogonal Decomposition Algorithm,
implemented in the ODA package [9], which is a library of
C routines, especially suited to solve nonlinear least-square
problems.
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4 Examples

Several shape-synthesis problems have been solved using
cubic-splines. Two examples belonging to structural optimi-
zation are outlined in the balance of this paper.

4.1 Synthesis of the neutral axis of a curved
robotic link

The first case arose during the design of a novel spherical
parallel robot, the “Agile Wrist” [10], as shown in Fig. 2. As a
module of an 11-degree-of-freedom (dof) long-reach robot
operating on fragile objects such as the fuselage of aircraft,
the wrist requires a high positioning accuracy since any error
in the positioning of the tool could lead to expensive damage.

Proximal Link

Fig. 2: Prototype of the Agile Wrist

The kinematic chain of the “Agile Wrist” was borrowed
from the design of the “Agile Eye”, developed at Laval Uni-
versity in Quebec City [11]. Many factors can affect robot
accuracy, such as manufacturing and assembly errors, cali-
bration errors, etc. Our concern is the flexibility of the
manipulator links, which significantly reduces the positioning
accuracy of the robot due to external and inertial loading. For
the most part, the geometric shape and the cross-section
dimensions of robot links of manipulators are designed
arbitrarily, with simple shapes and constant cross sections.
Current structural optimization technology and the use of
highly accurate CNC machine tools enable designers to pro-
duce optimum, if less obvious, shapes; an efficient selection of
the design parameters should improve link stiffness without
making the link heavier. A general trend in the design of
lighter and stiffer structures has led to the use of sophisti-
cated materials, like carbon fibre-reinforced composites, with
the consequent slendering of structural components. These
components should ensure that no failure can occur under a
given range of loads, which has motivated intensive research
in the area of structural optimization, a very active field since
Schmidt set forth an approach for coupling finite element
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analysis and nonlinear programming [12]. In our work, struc-
tural optimization was conducted through the optimum de-
sign of the links of the Agile Wrist in order to enhance the
load-carrying capacity, while minimizing weight. We focus
here on the shaping of the links, rather than on material
selection. The material of choice, as decided on earlier, was
aluminum AL2014.

For optimization purposes, the problem at hand was
decomposed into two main steps: The first one consists in
defining the neutral axis of the links, i.e., the mid-curve; the
second consists in defining the cross section at each point of
the mid-curve. The idea is rather simple: once the mid-curve
of the link is defined, the link shape is obtained by sweeping
and blending simultaneously a cross-section of a given shape
(rectangle, circle, etc.), whose dimensions are variable along
the curve, and lie in a plane normal to the mid-curve. Since
the second step can be completed with CAE software, we focus
on the synthesis of the mid-curve. To this end, the mid-curve
I of the proximal link, shown in Fig. 3, is defined so as to min-
imize the root-mean square value of the curvature throughout
I' and to ensure a blending of the linear segments with the
curved segment as smooth as possible. Notice that the two
ends lie at different distances from the center of the wrist, in
order to increase the workspace of the Agile Wrist, besides
reducing the likelihood of collisions among moving links and
the tool installed on top of the upper platform.

y

h B

Fig. 3: The mid-curve of the proximal link

Twenty spline supporting points P;, for ¢ =0,...,19, are
used, whose angles 6, in polar coordinates are given by:

1|
9i—a+n+l{2—(a+ﬁ)} (20)
with

a= arctan(ll) and ff = arctan(lij.
a b

With the aid of ODA, the optimum values of the design
variables were found. The objective function to minimize is
the rms value of the array of curvature values at the support-
ing points, while respecting the tangency and zero-curvature
conditions at points Py and P, ;. A convexity condition was
added, so as to ensure that no changes in curvature-sign oc-
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Table 1: Numerical results for the optimum mid-curve of the proximal link

) p; [mm] x; [mm] y; [mm] 1 p; [mm] x; [mm] y; [mm]
0 90.3009 89.5000 12.0000 10 87.7878 60.7257 63.3962
1 91.2159 89.3859 18.1795 11 86.3873 55.4222 66.2658
2 91.9843 88.7004 24.3585 12 84.9587 49.9954 68.6910
3 92.4646 87.3132 30.4319 13 83.5441 44.5046 70.7032
4 92.6339 85.2225 36.3065 14 82.1737 38.9943 72.3323
5 92.4845 82.4522 41.8929 15 80.8669 33.4957 73.6036
6 92.0253 79.0508 47.1128 16 79.6338 28.0313 74.5372
7 91.2811 75.0882 51.9039 17 78.4782 22.6175 75.1484
8 90.2919 70.6501 56.2245 18 77.4004 17.2674 75.4497
9 89.1084 65.8309 60.0549 19 76.4477 12.0000 75.5000

cur. These twenty points, expressed first in polar coordinates,
were then expressed in Cartesian coordinates as required
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Fig. 4: Mid-curve synthesized for the Agile Wrist: (a) the curve, (b)
its curvature distribution
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Fig. 5: Von Mises stress distribution along the optimized proxi-
mal link (thickest cross-section is located closest to the
motor)

by CAE software. The radius p; and the Cartesian coor-
dinates (x;, y;) obtained for ¢« =89.5 mm, b =75.5 mm and
l, =0, = 12.0 mm, are listed in Table 1. The rms value
of the curvature distribution over the synthesized curve is
0.0144 mm™'. The curve is plotted in Fig. 4a, its curvature
distribution being shown in Fig. 4b for verification of the cur-
vature continuity at the two blending points. Based on this
mid-curve, structural optimization was completed by consid-
ering the cross-section at each point of the curve. The overall
stress analysis on an optimized link with two circular cross-
-sections at its ends is graphically displayed in Fig. 5, where no
stress concentrations are observed. It is noted that the link
fabricated, shown in Fig. 2, exhibits a rectangular, uniform
cross-section, which is cheaper to machine, and we decided to
adopt to stay within budget.
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4.2 The design of a wrist mechanism housing

The second example pertains to an innovative mecha-
nism, a gearless pitch-roll wrist (PRW) [13], namely, a robotic
device intended to produce two-degree-of-freedom rotations
of a robotic gripper about a fixed point, the wrist center.
Conventional means of producing such motions rely on a
bevel-gear differential train, similar to those found in auto-
motive driving-wheel axes. Moreover, such trains, in robotic
wrists, invariably bear straight-tooth bevel gears, which are
the source of noise and significant power losses. In an attempt
to overcome these drawbacks, a PRW is being designed at
the Robotic Mechanical Systems Laboratory, McGill Univer-
sity, Montreal, as depicted in Fig. 6a, with gears replaced
by cam-roller pairs.

The key component of the mechanism is an array of
spherical Stephenson mechanisms (SSMs) used to transmit
the power from the two independent cam rotations to the
gripper, as illustrated in Fig. 6b. The two cams are driven by
the motion of the two roller-carrying disks of Fig. 6a, which
are rigidly coupled to their respective motors.

When the two face-to-face motors turn at opposite angular
velocities of identical absolute values, the whole array turns
about the common axis of the two cams, as a single rigid body
(pitch); when the two motors turn at identical angular veloci-
ties, the plane containing the four spherical-linkage centers
remains stationary, but the gripper turns about its axis (roll).
The array must be supported by a housing that doubles as a
protection means to isolate the spherical linkages from the
environment dust and dirt.

Housing

(b)

Fig. 6: An innovative PRW with cam-roller pairs: (a) the mecha-
nism; (b) an array of two SSMs and their mirror-images
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One approach in designing the housing is to make use of
Lamé curves [14], which are given by the implicit function

4
oy,
b

where p is an integer and ¢ and b are real numbers that deter-
mine the dimensions, 2a x 2b, of the box circumscribing the
curve. A PRW housing design [15] is shown in Fig. 7, which is
based on Lamé curves, with p =4 for the inner surface, and
p =6for its outer counterpart. In most common applications,
Lamé curves are needed only in the first quadrant, at which
we can dispense with the absolute-value signs, and rewrite eq.

(21) as

P 4

(ﬁ) +(yj =1,0<x<L0<y<l
a b

In any event, moreover, the curvature of these curves at
the points of intersection with the coordinate axes vanishes,
thereby allowing for Gg—continuity at the points of blending
with two line segments at 90°.

X

a

+ (21)

(22)

While Lamé curves, in the foregoing case, provide a thick-
er cross section at the points of maximum curvature, a plus for

Fig. 7: The Stephenson-linkage housing made up of two identical
covers

the curves, the additional material, placed at a distant loca-
tion from the cam axis, adds significantly to the moment of
inertia of the whole device.

An alternative design is thus desirable to replace the cur-
rent housing shape by means of a new shape that is free of the
drawbacks of Lamé curves. The new housing is to have both
uniform thickness and zero curvature at the blending points
with the straight bearing housings.

The profile of a new design is displayed in Fig. 8a, which
was generated based on non-parametric cubic splines. The
numerical results, namely, the values of the p-coordinate at
the unknown supporting points, are listed in Table 2. In this
case,a =198 mm, b =98 mm, the half-length of the horizontal
line being equal to 100 mm and the half-length of its vertical
counterpart being equal to 20 mm. A Lamé curve with p =4 is
displayed in Fig. 8a together with the synthesized curve for
comparison. The curvature distributions of the two curves are
shown in Fig. 8b, which indicates that the synthesized curve
has a lower maximum curvature value, implying a higher
allowable bending moment. The rms value of the curvature
of the synthesized curve is 0.0119 mm™!, as compared with
0.0142 mm™! of the Lamé curve with p =4. A new housing
is currently under design.

http://ctn.cvut.cz/ap/
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Fig. 8: (a) New housing profile and (b) curvature distribution over
the synthesized curve; shown dashed is the Lamé curve

Table 2: Numerical results for the housing design

i p; [mm] K; t | p;[mm] K;

0 | 199.0075 | 0.0000 | 10 | 189.4187 | 0.0155
1 | 199.7687 | 0.0094 | 11 | 185.4056 | 0.0146
2 2003707 | 0.0109 | 12 | 180.7433 | 0.0133
3 1200.6720 | 0.0122 | 13 | 1754735 | 0.0117
4 | 200.6039 | 0.0135 | 14 | 169.6913 | 0.0098
5 | 200.1041 | 0.0145 | 15 | 163.5592 | 0.0076
6 | 199.1170 | 0.0153 | 16 | 157.2998 | 0.0054
7 1 197.5937 | 0.0159 | 17 | 151.1588 | 0.0033
8 | 195.4919 | 0.0161 18 | 145.3498 | 0.0014
9 | 192.7760 | 0.0160 | 19 | 140.0142 | 0.0000

5 Conclusions

A methodology of curve synthesis with G2-c0ntinuity was
proposed, based on non-parametric cubic splines. Two syn-
thesis examples are provided to demonstrate the effectiveness
of the methodology.

The proposed methodology was applied to planar curves.
It can also be used in spatial curves, if these curves are synthe-
sized via their projections on the orthogonal planes [16]. For
shape optimization, the procedure described herein can be

© Czech Technical University Publishing House
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integrated with CAE software. The procedure is also expected
to find applications in areas such as trajectory generation and
path planning for manipulators and mobile robots.
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Appendix
The linear relationship between p and p” is expressed as
Ap” — 6(:p
where
(21 0 0 0 0 [y 1 0 0 - 0 0 |
1 4 1 0 0 0 -2 1 0 0 0
01 4 1 0 0 I -2 1 0 0
A=Ab| f =L : (23a)
Do : : A6 :
0 0 1 1 0 0 0 1 -2 1 0
0 0 O 4 1 0 0 0 1 -2 1
0 0 0 1 2 |00 0 0 1 ¢
in which »" =n + 2 and
A A
611:_ _76, Cnhnz—l—l. (QSb)
t4 tp
Similarly, the linear relationship between p and p” is
Pp'=Qp
where
1/A6 0 0 0 0 iy 0 0 0 0]
1 4 1 0 0 -3 0 3 0 0 0
0 1 4 0 0 0 -3 0 3 0 0
P=A0 , Q= (23¢)
0 0 1 0 o 0 -~ =3 0 3 0
0 0 0 4 1 0 0 0 -3 0 3
| 0 0 0 0 1/A0] L0 0 0 0 0 1/tg]

It is noteworthy that when either y,4 or y is equal to 77/2, Q becomes singular. In our procedure, however, we need not invert

Q, for all we compute is p’ = P71Qp.
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