
1 Introduction
The problem of complex probability functions is gaining

in importance in quantum mechanics [1, 9], where the phase
functions has been recognized as necessary for information
processing and quantum system modeling. The contextual
interpretation of phase functions was presented in [7], and
the wave probabilistic models were introduced as necessary
part of probabilistic multi-models. A more rigorous introduc-
tion to wave probabilistic models was presented in [14], where
phase parameters are interpreted as dependency functions
between events. The link between wave probabilistic functions
and the complementarity principle was first introduced in
[10]. The quantization principle as the consequence of phase
parameters was defined in [6].

The goal of this paper is to continue in this way of think-
ing and to provide a more rigorous definition of wave proba-
bilistic models together with their basic features. Chapter 2
presents the mathematical theory of wave functions, together
with their geometric interpretation. Chapter 3 covers the link
between wave probabilities and entanglement. Chapter 4 de-
scribes the general estimation algorithm of wave probabilities.
Chapter 5 presents the methodology for modeling non-er-
godic binary time series. Chapter 6 offers an illustrative
example of binary time series, and Chapter 7 concludes the
paper.

2 Mathematical theory of wave
probabilistic functions
A probability space consists of a sample space S and a

probability function P(.), mapping the events of S to real
numbers in [0,1], such that P(S) �1, and if A1, A2, … is a se-
quence of disjoint events, then the sum rule is fulfilled:
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If the events A1, A2, … are not disjoint the following
(product and inclusion-exclusion) rules can be defined:
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Taking into consideration the basic laws of probability de-
fined above, we can rewrite them with the help of the complex
representations (wave functions) summarized in Theorem 1.

Theorem 1: Let us define N events Ai, i N�{ , , , }1 2 � of a

sample space S, with defined probability functions P A( )i ,
i N�{ , , , }1 2 � and let us define the N complex functions

� � � �( ( ) , { , , , }A ) e P A ei i
j

i
ji i i N� � � � � 1 2 � (4)

together with their superposition state �
�

as a quantum ob-
ject at its measurement place (or at time series position) �:
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with modules P A( )i and phases �i where the reference phase
assigned to event A1 is chosen as �1 0� , then the inclusion-ex-
clusion rule given in (3) is represented for measurements on
quantum objects � �� �1, ,� N (or at a time series window)
by:
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where the phases �i are given:
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and �1 2 1, , ,� i
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Proof: The proof is presented in [15].
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In the next part of this paper, the set of complex functions
(4) plus superposition state (5) together with the inclusion-ex-
clusion rule (6, 7, 8) is called the wave probabilistic model.

Theorem 2: Let us define N events Ai, i N�{ , , , }1 2 � of a
sample space S, with defined probability functions P(A i),
i N�{ , , , }1 2 � , and the N complex functions �(A i) with mod-
ules P A( )i and phases �i defined in (4–8), where the refer-
ence phase assigned to event A1 is chosen as �1 0� , then the
inclusion-exclusion rule given for the subset of events Ar,
r k k km�{ , , , }1 2 � is given as:
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Proof: The proof of Theorem 2 arises directly from Theorem
1, which was proven for all probabilistic values P A( )i , A i,
i N�{ , , , }1 2 � including zeros. The zero probabilistic values
have an impact on phase parameters �i and change them in
such a way that equation (9) is fulfilled.

In this paper we assume that quantum objects � are distin-
guishable. When two identical particles interact (there is a sig-
nificant overlap of their wave functions), we can not distin-
guish between them. These overlapping quantum objects are
in general bosons (plus sign corresponding to a symmetric
wave function under exchange of quantum objects) or fer-
mions (minus sign corresponding to an anti-symmetric wave
function under exchange of quantum objects).

3 Wave probabilities and
entanglement
Quantum entanglement (the definition for describing the

entanglement principle from Wikipedia, available on:
http://en.wikipedia.org/wiki/Quantum_entanglement )

is a quantum mechanical phenomenon in which the quantum
states of two or more quantum objects have to be described
with reference to each other, even though the individual
objects may be spatially separated. This leads to correlations
between observable physical properties of the systems. For
example, it is possible to prepare two particles in a single
quantum state such that when one is observed to be spin-up,
the other one will always be observed to be spin-down and
vice versa, despite the fact that it is impossible to predict, ac-
cording to quantum mechanics, which set of measurements
will be observed. As a result, measurements performed on one
system seem to be instantaneously influencing other systems
entangled with it.

Theorem 3: Let us define N events Ai, i N�{ , , , }1 2 � of a
sample space S, with defined probability functions P(A i),
i N�{ , , , }1 2 � , and the N complex functions �(A i) with mod-
ules P A( )i and phases �i defined in (4–8), where the refer-
ence phase assigned to event A1 is chosen as �1 0� , then
all events Ar, r r r rn�{ , , , }1 2 � with only two possible states
A r ii ��

A r ii ��
are entangled if the following form holds:
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which yields into form:

P A A( )r r nn1 1
1

� �� �
� � �� (11)

where A r ii ��
means the inversion state in comparison with

A r ii ��
on quantum object ( )� � i .

Proof: Theorem 3 emerges directly from the inclusion-exclu-
sion rules and from the definition of wave probabilities. Phase
parameters assigned into wave functions can be either posi-
tive or negative.

Form (10) modifies the phases for the selected subset of
events { , , , }A A Ar r rn1 2

� to comply with the inclusion-exclu-
sion rule (9). For special cases, the inclusion-exclusion rule
can yield into zero due to wave resonances within the phases
of events. This special case can occur for a special set up of
phases.

Zero probability (10) directly yields into equation (11),
which defines that the state characterized by A Ar rn1

� ��

will surely occur. This state is not random but fully determinis-
tic and so spatially spread within events { , , , }A A Ar r rn1 2

� .

It can be stated that entanglement is the logical result
of probabilistic wave functions, and represents something
like the resonance wave functions yielding into deterministic
states.

4 Estimation algorithm of the wave
probabilistic model of time series
We assume the time series composed of many quan-

tum objects, each of which is described by wave function
covering the superposition principle of all possible events
{ , , , }A A A1 2 � N :

� � �
� � �

� � � � �1 1A AN N� , (12)

where � means the �-th quantum object.

If we take into consideration the window of i quantum ob-
jects, the corresponding wave function ~�

�
is given by the

Kronecker Product [14]:
~� � � �

� � � �
� � � �� � �1 2 � i, (13)

where ~�
�

2
give us probabilities that measurements on the

set of i quantum objects { , , }� �� �1 � i will yield into a series
of predefined events.

Now we assume that we have the time series, and by re-
turn, we estimate the wave functions (4). The algorithm for es-
timating the parameters of the wave functions can be decom-
posed into following steps:

1. Let us start with two events { , }A A1 2 and assume ��1 0� .
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2. We can estimate the phase ��2 from the following equation:
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with the help of occurrence rates � , � , � , �,� � � �1 2 1 2 1 estimated
from time series.

In principle we estimate the probabilities:
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parameters � , � , � ,� � �1 2 1 2.

3. We continue and extend the algorithm for three events
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where the estimate of angle ��3 can be computed from the
following equation:
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under knowledge of the estimated parameters � , � , � ,,� � �1 2 1 2
� , � , � ,� � �1 2 1 2. This step must be made numerically because
equation (16) is non-linear.

4. The above described procedure can be extended to a gen-
eral N-step, where the unknown angle ��N is assumed to be
numerically computed from the following equation:
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Fortunately, for binary time series we need only step 1 and
2, and the result can be given analytically.

5 Wave probabilistic model of
non-ergodic binary time series
We start our discussion with probabilistic binary time se-

ries, and we will show models of the occurrence of zero or one
(probability and structure) in the form of wave probabilistic
functions.

Let us define the binary quantum object in “bra-ket” form
[17]:

�
� �

�
�

� 
 � � � �1 0 1p p je . (18)

Parameter p defines the probability of occurrence of state
1

�
of time series position �. The probability of occurrence of

a state 0
�

must be (1 
 p). Phase � plays the role of “struc-
tural” parameter that expresses the rate of time series ran-
domness [16].

The ergodic theorem allows the time average of a con-
forming process to equal the ensemble average. In practice,
this means that statistical sampling can be performed at one
instant across a group of identical processes or sampled over
time on a single process with no change in the measured
result.

Quantum objects defined in (18) fulfill the ergodic theo-
rem, because the time average of a series along the time
trajectories exists almost everywhere and is related to the
space (set of realizations) average:
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whereE� is the mean value of a stochastic process and �(�) is a
probability measure. The first part of (19) is the �-ensemble
average, which does not depend on time t and so the process
is stationary. The second part of (19) is the time-average of
quantum objects � �

� �
, ,t tn1 � �� with respect to selected

process realization �.

If the complex parameters of the “bra-ket” model are
time dependent we speak of a non-ergodic probabilistic bi-
nary process. Since non-ergodic processes are very difficult
to model we will ease our requirements only to a special class
of quasi-non-ergodic processes. Quasi-non-ergodic processes
are characterized by linear time invariant (LTI) evolution of
complex wave functions �( , )A i t assigned into states A i �

in
time interval t and position �.

If we add the time varying phase parameter into a binary
process we can rewrite “bra-ket” objects (18) as follows:
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where parameter A
 defines the probability of occurrence of
state 1

�
. Parameter �
 expresses the initial structure of the

studied set of �-positioned states. Parameter 
 represents
the frequency of continual structuring and randomizing of �

positioned states. Due to the time evolution of complex pa-
rameters (20) the ergodic condition is not fulfilled.

The parameters for state 0
�

can easily be computed from the
parameters assigned to state 1

�
because A
 must be maxi-

mally equal to one to be a probability function and the phase
assigned to state 0

�
is assumed to be the normalized ref-

erence phase presented in Theorem 1 and equal to zero.
Frequency 
 can be interpreted as the energy spent to “struc-
ture” or “randomize” the set of �-positioned states with
respect to chosen frequency 
.

We use the notation A
, �
 as modulus and initial phase
parameters assigned to frequency 
. They represent the fre-
quency decomposition in the same way as the Fourier
transform. Equation (20) can be used as one frequency com-
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ponent (modulus and initial phase) of a non-ergodic binary
quantum object.

The general periodic non-ergodic behavior can be ex-
pressed as the sum of different frequency components:
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where the final modulus and phase assigned to state 1
�

are:
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where~( )A t is the time evolution of the probability of state 1
�
,

and ~( )� t is the evolution of the link among different � posi-
tioned quantum objects (expressing structuring and random-
izing). The complex parameter assigned to 0

�
is computed

from the normalization and reference condition:

�
� �
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, ~ ~ ~ )t t t j t� 
 � � � ��1 0 1A( ) A( ) e . (23)

Equation (23) can be understood as the “bra-ket” repre-
sentation of general non-ergodic binary quantum objects.

We can see in (21) that for every state 0
�
, 1

�
the discrete

modules and phase spectrum can be defined. This means that
the time-evolution is modeled by a periodic function. The dis-
crete spectrum can be replaced by a continuous spectrum.
In this case, the sums in (21) are replaced by integrals. This
replacement means the transition from a Fourier series into
the Fourier transform.

6 Illustrative example-binary time
series
Let us take two values { , }A A0 10 1� � time series rep-

resented by two complex wave functions �( )A 0 and �( )A1 .
In the next part we will use for simplicity the notation
� �( )A 0 0� and � �( )A1 1� .

A. Complementarity principle
We demonstrate the complementarity principle of binary

time series.
Discrete Fourier Transform (DFT) is defined for k,
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Probability in x-representation is given from (4):
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First we compute DFT of wave functions �0, �1:
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where �(.) are DFT transformed functions.
The probability function in k-representation can be given

[10]:
~( ) ~( ) ~ ( )
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where � means the phase difference between complex num-
bers �0 and �1.

The Inverse DFT of probabilities (26) and (27) yields into
convolution in x-representation and describes the links be-
tween two successive quantum objects.

If the phase parameter is zero � � 0 the values are strong-
ly independent and the time series is fully random. Phase
� �� 2 explains that the probability of changes {0, 1} or
{1, 0} in the time series is very low. A binary time series looks
like { , , , , , , , , , , , }0 0 0 0 0 0 0 1 1 1 1 1 1 1� � . On the other hand if
the phase parameter is � �� the probability of finding a pair
{1, 1} or {0, 0} limits to zero. The corresponding time se-
ries looks like {0, 1, 0, 1, …, 0, 1, 0, 1} and seems to be fully
deterministic.

B. Entanglement principle
Let us take two quantum objects ~�

�
of a time series with

wave functions �0 and �1 defined in (13) and (18). Let us de-
fine the probability:

P A A(( ) ( )
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where � is the phase difference between wave functions �0

and �1. Suppose now with respect to Theorem 3 that:
P A A(( ) ( )� �� � � ��0 1 01 . (29)

This case can occur for the following values of �:
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. (30)

If, for example, � �0 1
1
2

� � then � �� represents the
entanglement.

As the result of entanglement we can write that the follow-
ing events will surely happen (there are no random values):

P A A(( ) ( )� �� � � ��1 0 11 . (31)
We can also start with the following probability, instead of

(29):
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P A A(( ) ( )� �� � � ��1 0 01 . (32)
Then the entanglement yields into:

P A A(( ) ( )� �� � � ��0 1 11 . (33)
Equations (32) and (33) can both be written to quantum

“bra-ket” representation:
~ ( ).�
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1
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01 10 (34)

Measuring the first quantum object from representation
~�

�
(the probability of measuring event 0 is 1/2 and the prob-

ability of measuring 1 is also 1/2) fully determines the value
which will be measured on the second object. Equation (34) is
the well-known Bell state, which is used in many applications,
e.g., in quantum teleportation, quantum cryptography, etc.

C. Wave function estimation
Let us define the time series:

{0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0}
with the estimated occurrence rates:
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By using the inclusion-exclusion rule we can apply the es-
timated probabilities and write the following equation:
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from which the estimated phase parameter can be computed:
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If we use the estimated angle we can compute the inclu-
sion-exclusion probability as:
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where the estimate (39) corresponds to the occurrence rate
directly estimated from the time series:

� ( ) ( ))P( A A� �� � � ��0 1
11
141 . (40)

We can see the compliance between (39) and (40).

7 Conclusion
Wave probabilistic models have been introduced and a

mathematical comparison between usually used probabilistic
models and wave probabilistic models has been presented.

Mathematical theory points to the applicability of wave
probabilistic models and their special features. Quantum en-
tanglement is explained as the consequence of phase para-
meters and it can be interpreted as the resonance principle
of wave functions. The results of wave function resonance
are fully deterministic, spatially distributed states with many
properties.

The complementarity principle presents the studied time
series in both x- and k-representation, where x-representation
provides us with probabilities of occurrence of different events
and k-representation caries information about the links be-
tween events and how the time series is structured.

The general estimation algorithm for phase parameters
of wave probabilities was introduced and shown on an illustra-
tive example – a binary time series. We can understand that
this methodology yields into new models taking into account
the structure of time series.

The application of the methodology presented here for
non-ergodic time series modelling is also described and
shown on binary time series. This opens new ways for model-
ling non-ergodic or quasi-non-ergodic processes of this kind.

The inspiration for the problem defined here came from
quantum physics [1, 4, 6, 7]. The analogy with quantum me-
chanics seems very interesting and will inspire future work in
statistical modelling area and wave probabilistic models.
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