
1 Introduction
So far it has been believed [1] that electron populations n

of avalanches crossing a discharge gap d in a homogeneous
electric field are governed by Furry statistics [2–3]
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where w0 and � are the probability density function and the
first Townsend ionization coefficient, respectively. The valid-
ity of this law used to be accepted [1] independently of the size
of the avalanches, i.e., regardless of the magnitude of their
mean electron content n, in spite of the fact that there were
strong indications [1], [4–5] showing different statistical be-
havior. Especially with highly populated avalanches n �105,
clear deviations from the Furry law (1) were often observed
[4–5]. It has been illustrated many times [6–12] that the
population statistics of such highly populated avalanches and
streamers obey Pareto (fractal) statistics

w n d a D
1

1( , ) ( )� � � �n , (2)

where a is a constant and D is the so-called fractal dimension
[13]. Convincing examples of different statistical behavior of
highly and lowly populated avalanches can be found in the
earlier work of Richter [5]. He measured population statistics
in ether under discharge conditions that were favorable for
creating a mixture of pre-streamer and streamer avalanches,
with a majority of the latter. Such highly populated ava-
lanches (n �108) provided distribution functions with a very
deep bending in the semilogarithmic co-ordinate system, where
the population statistics of avalanches should show linear be-
havior in accordance with the Furry law. When analyzing
Richter’s curves in the bilogarithmic system, one can easily rec-
ognize two neighboring different regions (see Fig. 1). There is
a longer linear part and a shorter non-linear (bent) part. The
bending of the latter corresponds to the exponential Furry
behavior typical for less populated avalanches, whereas the
linear part represents the Pareto behavior characteristic for

highly populated avalanches and streamers. This figure
clearly illustrates that the exponential and power fitting func-
tions in the Furry and Pareto regions, respectively, represent
a good choice among possible analytical candidates, since
both the fits follow the experimental data well.

Another instructive example showing how well the Pareto
power function represents the experimental data is given in
Fig. 2. In this case, avalanches were detected across a resis-
tance as short voltage pulses with random heights u. (The re-
sistance (R�100 k�) was connected in series to the discharge
gap (C) so that the two components formed a classical RC-
-circuit – for more details see [14].) Since the voltage pulses u
were not calibrated against the number of electrons n, the
resultant distribution curves w1 are dependent on u instead
of n. Assuming linear proportionality u c n� � , the curve
w u c u D

1 0
1( ) ( )� � � � will preserve the same shape as w n1( ), i.e.

they will both possess the same slope� �( )1 D .

Recently a new statistical pattern has been developed [14]
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Pattern (3) unifies both Furry (1) and Pareto (2) statistics
into a single analytical form. For example, if J � 0, the Furry
distribution results from (3), whereas for J � 0 a superposi-
tion of Furry/exponential functions creates Pareto behavior,
i.e. the linear section on the graph w(n, d) plotted in biloga-
rithmic co-ordinates, as shown in Fig. 1. In addition, a rigor-
ous mathematical proof was presented in Ref. [14], showing
equivalence between statistical forms (2) and (3).

In order to explain the meanings of parameters G, K , N,
and nd used in generalized analytical form (3), it is necessary
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Fig. 1: Population statistics of a mixture of lowly and highly populated avalanches. Statistical relevancy: Furry fit R2 09975� . and
�2 000018� . , Pareto fit R2 0998� . and �2 00001� . . Data taken from [5].

Fig. 2: Avalanche statistics (voltage pulses) in air at normal laboratory conditions. After [14].



to make a brief description of the scenario of fractal avalanche
multiplication (Fig. 3). Let us consider a parent avalanche
started at the cathode. After crossing a critical distance �, it
may gather a certain number of electrons N � exp( )�� (� is
the first Townsend ionization coefficient), and the uv-radia-
tion associated with collisional ionization may initiate K new
displaced avalanches (K is the so-called multiplicity). The dis-
placed avalanches continue their own independent tracks,
and after passing a distance � they may (or may not) generate
K 2 new displaced avalanches of the second generation. In
general, the j-th generation of displaced avalanches contains
K j avalanches and the highest generation J is limited by the
length d of the discharge gap, critical distance � and the
value of �, i.e. J d� � �1. The populations of displaced ava-
lanches of the j-th generation that reach the anode can easily
be expressed: � �n d jd j, exp ( )� �� � . The term n nd d� ,0 is a
population of the parent avalanche ( j � 0). Each generation
has its own distribution function
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and their sum over all generations ( j J� 0 1, , ,� ) leads to sta-
tistical pattern (3) – more details can be found in Ref. [14].
The symbol G represents the normalization constant. Since
the process of fractal avalanche multiplication is highly sto-
chastic, average values K N nd, , � and are used.

Creation of additional smaller avalanches inside the dis-
charge gap is a rather different process from that of branch-
ing with streamers. While multiplication of avalanches results

in creating a set of separate avalanches, streamer branching
leads to a connected network of plasma channels. A common
item of these two processes may be photoionization. Photo-
ionization is the “driving force” necessary for streamer propa-
gation, but in the case of avalanches it represents one of the
possible creation mechanisms. However, streamer branching,
as described by recent research papers [15–18], seems to
be a complex process. Kulikovski [15] interpreted streamer
branching as an instability that transforms the non-standard
streamer into a number of standard streamers. Pancheshnyi
[16] described the effects of streamer branching on the basis
of background ionization and photoionization. Arrayas et al.
[17] described the splitting at the streamer tip as a Laplacian
instability. Montijn, Ebert and Hundsdorfer [18] compared
this instability to the branching instability of fluid interfaces
in viscous fingering. There are many other works that nu-
merically simulate propagation and branching of streamers.
Nevertheless, to our knowledge there is no work that numeri-
cally simulates fractal multiplication of avalanches as a basis
for explaining the Pareto behavior of avalanche population
statistics, though existing numerical models of streamer
growth could determine these statistics, including avalanche
multiplication.

The present paper focuses on a recently published statisti-
cal model [14] concerning populations of electron avalanches
that undergo fractal multiplication within the discharge gap.
The discussion focuses on the model parameters and their
connections with physical processes underlying the phenom-
enon of fractal avalanche multiplication. The discussion ex-
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Fig. 3: Scheme of fractal avalanche multiplication. After [14].



plains in detail the role of each particular parameter, and pro-
vides a deeper insight into the model operation.

2 Discussion of model parameters
The probability density function (3) has the character of a

fitting function containing four parameters J, K N, and nd

which, together with dimension D, deserve further discussion
and explanation.

2.1 Parameter nd
This parameter represents an average number of electrons

n dd � exp( )� in the parent avalanche. For a given discharge
gap, gas content and physical conditions, the value of nd is a
fixed number.

However, from the viewpoint of fractal theory nd cannot
be considered as a fixed reference population scale that will
“anchor” all remaining avalanche components (displaced av-
alanches), since each generation ( j) of displaced avalanches
has its own scale (n Nd

j) and all these population scales are
as important as nd . Thus, the statistical set of all avalanches is
a mixture of many mutually different but equally important
population scales, none of which stands for a unique, basic
scale defining a reference. This is one of the basic properties
of all fractal objects. Now that the principle of the lost refer-
ence scale has been mentioned, it is clear that it has no sense
to change the only parameter nd at fixed others to model the
transition from Furry statistics to Pareto statistics. The only
item that will be influenced by changing nd is the position of
the linear section on the graph log(w) versus log(n). But if
a complete set of avalanches is considered, i.e. n � �( , )0 ,
nd � � (for d � �), the linear section will be infinitely long
and there will be no need to change nd . In such a case the
parameter nd will lose its analytical role, which consists in
shifting the linear section along the graph when an incom-
plete avalanche set is fitted. According to the adopted statisti-
cal concept, it is not the value of nd that governs the transition
between Furry and Pareto statistics. The high values of nd that
can be observed when such a transition occurs seem to be only
an accompanying effect (not a primary effect).

2.2 Parameter N
The value of this parameter is intimately connected with

the critical distance � at which the primary avalanche may
generate the first displaced avalanche, i.e. N � �exp(� � .
In other words: the average distance � is necessary for the
primary avalanche to assemble a certain number of electrons
N that are capable of generating sufficient uv radiation (for-
mation of photon sources) to facilitate the creation of dis-
placed avalanches. It is assumed that the effective ionization

length � [15], [19], which is passed by photons prior to their
absorption (photoionization events), is independent of �.
(The photoionization process is assumed to be effective in the
case of molecules that have been excited to their higher
energy states in previous collisions with electrons. The dif-
ferent values of the first ionization potentials of N2 and O2

molecules in air make this process still easier.) Although the
values of these two parameters can be arbitrarily different,
both the processes, i.e. the appearance of the critical popula-
tion N and the appearance of the first displaced avalanche,
are almost synchronous, due to the very high speed of the
photons. However, it should be mentioned that not all pho-
tons are capable of performing photoionization, and not
every photoionization terminates by starting new avalanches,
and, of course, not all newly-created avalanches propagate
independently of the parent avalanche (some of them may be
integrated into the body of the parent avalanche).

The quantity N actually represents a measure of the capa-
bility of parent avalanches to generate displaced smaller ava-
lanches by means of the complete photoionization process.
From this viewpoint, it is clear that the number of electrons
adequate for this purpose must be higher than one, i.e. N �1.

2.3 Parameter J

This parameter determines an extension of the fractal re-
gion (linear section of the graph log(w) versus log(n)). If the
whole region is measurable by the experimental device that is
used, parameter J can be estimated accurately and represents
so many avalanche generations – i.e. “humps” [14] on the
graph – that are capable of covering all the linear region mea-
sured. This is quite easy to realize, e.g., heuristically (trying
various numbers of generations). In such a case, the value J
provides a right number of displaced avalanche generations
and is equal to its upper limit J dmax � �� 1.

However, experimental devices are sometimes not capable
of measuring the whole extent of possible data. They usually
measure in some restricted interval (measuring window). The
result is a population distribution restricted to a certain extent
which is narrower than the real extent, and parameter J, when
fitted to the length of such a linear section, will not represent
an exact number of avalanche generations but, instead, it will
be smaller J J d! � �max � 1. This is the case for the statis-
tics in Fig. 4. Inserting the length d � 07. mm of the discharge
gap used and the value � " #� 57 56 m into the formula of the
upper limit J dmax � �� 1, one can obtain eleven genera-
tions Jmax �11, but the fitting to the measured linear section
in Fig. 4 gives J J� !7 max, which seems to be a consequence
of constrained measurements. Therefore, in both the cases –
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in constrained and unconstrained measurements – the quick-
est way to determine J is heuristic testing.

2.4 Parameter K
Parameter K , which has been termed “multiplicity”, speci-

fies multiplication (splitting) of displaced avalanches within
all their generations. Its value can hardly be predicted, be-
cause the number of the displaced avalanches is a matter of
purely stochastic processes, and there is no rule for estimating
this quantity. However, some limitations can be specified: K
cannot be zero, since in this case lim D

K�
���

0
, which is an

unacceptable result. In addition, K must be a positive number
and larger than or equal to one, i.e. K �1 because a fractal
dimension in our case must satisfy the following relation

0 3$ � $D K Nln ( ) ln( ) .

It is clear that the magnitudes of K and D cannot be deter-
mined directly from discharge parameters �, d and �, just be-
cause K is a result of an unpredictable, stochastic process and
D is dependent on K , i.e. D f K� ( ). However, statistical pat-
tern (3) has been proposed as a fitting pattern, and all its pa-
rameters, including K and D, can be determined either by
using an optimizing procedure or heuristically. For example,

if the whole distribution is measured, the entire linear section
is available, from which Jmax can be determined. As soon as
Jmax is known, the parameter � �N d J� �exp ( )max� 1 is
available. Parameter D (fractal dimension) can be estimated
from the experimental data by fitting the linear section of the
graph by a straight line – a regression line possessing slope s –
i.e., D s�� �( )1 . Then parameter K can be estimated by us-
ing K N D� .

2.5 Parameter D
Although the fractal dimension D does not explicitly occur

in the statistical pattern (3), it does have a fundamental mean-
ing. For this reason it will be convenient to discuss its physical
interpretation and properties in connection with the fractal
production of displaced avalanches.

The value of D is defined (4) by the values of parameters K
and N, i.e. D K N� ln ( ) ln( ) where K �1and N �1. A frac-
tal dimension, like a topological dimension, must be re-
presented by a positive number, and because splitting of
displaced avalanches occurs in the discharge gap, which is a
three-dimensional Euclidean space, the fractal dimension D
cannot be larger than three, i.e. 0 3$ $D . An increase in the
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Fig. 4: Fractal pattern fit of population statistics (voltage pulses – data taken from Fig. 2). The quantity ud �101 555. mV is a voltage scale
corresponding to the average voltage pulse created by the largest avalanches detected. The quantity g is not a normalization con-
stant but only indicates the shift between unnormalized data and the unnormalized distribution F n d( , ). After [14].



D-value is possible only if K increases or N decreases, or if
both these changes act simultaneously. An increase in K
means that the “splitting” is more effective (higher multi-
plicity means splitting into a larger number of displaced
avalanches). A decrease of N (at fixed �) means a smaller
critical distance �, and, therefore, a larger number ( Jmax)
of avalanche generations ( )maxJ d� �� 1 , which implies
a numerous set of displaced avalanches. Thus, large D means
that the discharge is accompanied by an abundant swarm of
displaced avalanches, which can be interpreted as a tendency
to delocalize the discharge over a larger portion of the inter-
-electrode space. In short, a higher D-value means a higher
discharge delocalization and, conversely, a lower D-value
indicates a more localized discharge with sporadic appear-
ance of displaced avalanches. Since the effect of discharge lo-
calization/delocalization is undoubtedly limited, among other
things by the electric field E used in experiments, it will be no
surprise that such a field dependence D(E) has been observed
previously [9], because of the acting space charges of the par-
ent avalanches, i.e. due to the dependence D E( ( ))� .

The variability of parameter D when going from less pop-
ulated to highly populated avalanches is well observable by
comparing Figs. 4 and 5. Less populated avalanches, whose
statistics are given in Fig. 4, generate lower values of dimen-

sion D and also smaller N and K, in comparison with big ava-
lanches with a prevalence of streamers (Fig. 5). This means
that streamer-like avalanches split more easily into side ava-
lanches. They are more delocalized (higher K) and are capa-
ble of filling better in the discharge gap (higher D).

3 Fitting procedure

Function (3), like any other multiparameter function,
must be handled carefully when performing a fitting proce-
dure. It is the starting values of the fitting parameters that
have an essential influence on the results of an optimizing
procedure. An inappropriate set of starting values may lead to
final values that satisfy the mathematical conditions but may
be physically completely unacceptable. To avoid such a fail-
ure, a proper choice of input values is necessary. In the case of
function (3), there are several useful aids for establishing a
proper choice.

Firstly, the value of nd should be estimated directly from
the statistical data rather than from the relation
n dd � �exp( )� , especially when the measuring device pro-
vides only a narrow acquisition range. It is suggested to esti-
mate the nd values as the horizontal asymptote of the ‘lowest
hump’ on the graph w n d( , ). If only a linear section (without
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Fig. 5: Fractal population statistics of a mixture of lowly and highly populated avalanches. Data taken from Fig. 1. G is a normalization
constant.



any ‘humps’) is available, the ‘corresponding asymptote’ can
be simulated by using

w n d
n

n
nd d

( , ) exp� �
�
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1 .

However, if only a restricted measuring range is available,
such a value may not have the meaning of the populations of
the largest parent avalanches. Instead, it may correspond to
the populations of some displaced avalanches. However, from
the viewpoint of the fitting procedure it will be a right choice
in either case.

The second parameter D can also be reliably estimated
prior to starting the optimizing procedure. Linear regression
of either the linear section or the ‘humpy section’ will provide
a slope s and, thus, the value D s�� �( )1 . Parameter D deter-
mines the ratio ln( ) ln( )K N , which may assist in estimating
K and N – the value of K does not usually exceed 4.

As soon as the estimate of nd , K and N has been made,
one can try to draw the graph w(n, d) using only the first two
terms ( J �1) of sum (3), and compare the result with the ex-
perimental data. After a re-adjustment of K and N, further
terms ( J �1) of sum (3) can be added until a full cover of
the linear section of the measured data is accomplished. If
necessary, final corrections of some parameters are recom-
mended in order to ensure a good accord with experimental
data. Only such ‘pre-processed’ values can be successfully
used as proper input data for the chosen optimizing (fitting)
procedure.

If the scenario described above is followed, it will be easier
to find results that may satisfy both the mathematical and
physical conditions.

4 Transition between Furry and
Pareto statistics
The proposed statistical concept (3) is based on creating

displaced avalanches formed most probably by photoioni-
zation during the initial stages of the collision process in the
parent avalanches if a sufficiently high electric field (and high E p)
is present. The term “sufficiently high electric field” refers
to such a field as is capable of ensuring the production of
highly populated avalanches (for example, in air at nor-
mal atmospheric conditions n �105). In such a case,
displaced avalanches may accompany the highly populated
parent avalanches that terminate either without converting
into streamers or as regular streamers that may or may not
undergo channel branching. Therefore, the condition for the
transition from Furry statistics to Pareto statistics of electron
populations is a sufficiently strong electric field facilitating the
creation of displaced avalanches.

There is also a simple mathematical condition ensuring
the transition between these two statistics. Furry’s distribu-
tion can be expected if � � d. As a consequence of this
condition, one can find J dmax � � �� 1 0and, in addition,
N d� �exp( exp( )� �� . This means that the parent
avalanche will reach the anode without starting displaced
avalanches and, thus, K loses its sense, and also D cannot
be rigorously defined. The condition Jmax � 0 excludes the
presence of displaced avalanches and, on the other hand,
ensures the participation solely of parent avalanches. The
parent avalanches cross the whole discharge gap and form
Furry statistics (1) with an average population n d� exp( )� ,
which represents a fixed non-fractal reference scale.

5 Conclusion
Instead of simple photoionization that acts solely within

the primary (parent) avalanche, a new concept of displaced
avalanche splitting has been proposed that allows for
photoionization going beyond the parent avalanche channel,
and for creating new smaller independent avalanches. The
new displaced avalanches modify the overall population dis-
tribution of avalanches and cause a transition from Furry to
Pareto statistics. Such a transition may occur especially when
the critical distance � for initiating displaced avalanches is es-
sentially smaller than the discharge gap itself � !! d . Furry
and Pareto statistics can be unified into a single generalized
analytical pattern that is capable of following the experimen-
tal data faithfully in both the statistical regimes (Fig 5). The
main limitation of the pattern consists in its restriction to ho-
mogeneous or quasi-homogeneous background electric
fields.
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