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Superconformal Calogero Models as a Gauged Matrix Mechanics

S. Fedoruk

Abstract

We present basics of the gauged superfield approach to constructing the N -superconformal multi-particle Calogero-type
systems developed in arXiv:0812.4276, arXiv:0905.4951 and arXiv:0912.3508. This approach is illustrated by multi-particle
systems possessing SU(1, 1|1) and D(2, 1; a) supersymmetries, as well as by the model of new A/ = 4 superconformal quantum

mechanics.

1 Introduction

The celebrated Calogero model [1] is a prime exam-
ple of an integrable and exactly solvable multi-particle
system. It describes the system of n identical parti-
cles interacting through an inverse-square pair poten-
tial ZQ/(% — )%, a,b = 1,...,n. The Calogero
a#b

modeféand its generalizations provide deep connections
of various branches of theoretical physics and have a
wide range of physical and mathematical applications
(for a review, see [2, 3]).

An important property of the Calogero model is
d = 1 conformal symmetry SO(1,2). Being multi-
particle conformal mechanics, this model, in the two-
particle case, yields the standard conformal mechan-
ics [4]. Conformal properties of the Calogero model
and the supersymmetric generalizations of the latter
give possibilities to apply them in black hole physics,
since the near-horizon limits of extreme black hole
solutions in M-theory correspond to AdS; geometry,
having the same SO(1,2) isometry group. Analysis of
the physical fermionic degrees of freedom in the black
hole solutions of four- and five-dimensional supergrav-
ities shows that related d = 1 superconformal systems
must possess N = 4 supersymmetry [5, 6, 7].

Superconformal Calogero models with N' = 2 su-
persymmetry were considered in [8, 9] and with N/ = 4
supersymmetry in [10, 11, 12, 13, 14, 15]. Unfortu-
nately, consistent Lagrange formulations for the n-
particle Calogero model with N' = 4 superconformal
symmetry for any n is still lacking.

Recently, we developed a universal approach to su-
perconformal Calogero models for an arbitrary number
of interacting particles, including N' = 4 models. It is
based on the superfield gauging of some non-abelian
isometries of d = 1 field theories [16].

Our gauge model involves three matrix superfields.
One is a bosonic superfield in the adjoint representa-
tion of U(n). It carries the physical degrees of free-
dom of the superCalogero system. The second super-
field is in the fundamental (spinor) representation of

U(n) and is described by Chern-Simons mechanical
action [17, 18]. The third matrix superfield accommo-
dates the gauge “topological” supermultiplet [16]. N-
extended superconformal symmetry plays a very im-
portant role in our model. Elimination of the pure
gauge and auxiliary fields gives rise to Calogero-like
interactions for the physical fields.
The talk is based on the papers [19, 20, 21].

2 Gauged formulation of the
Calogero model

The renowned Calogero system [1] can be described
by the following action [18, 22]:

So = / dt [Tr (VX VX)+
s i (2.1)
(2VZ -V2Z)+ cTrA} ,
where
VX = X +i[A4, X],
VZ=7Z+iAZ  NZI=1Z-iZA.
The action (2.1) is the action of U(n), d = 1 gauge the-
ory. The hermitian nxn-matrix field X°(t), (X?) =
Xy, a,b=1,...,n and the complex commuting U(n)-
spinor field Z,(t), Z* = (Z,) present the matter,
scalar and spinor fields, respectively. The n? “gauge
fields” A%(t), (A%) = A¢ are non-propagating ones
in d = 1 gauge theory. The second term in the ac-
tion (2.1) is the Wess-Zumino (WZ) term. The third
term is the standard Fayet-Iliopoulos (FI) term.
The action (2.1) is invariant under the d = 1 con-
formal SO(1,2) transformations:

1
St=a, 6XP=_ax?

2
67, =0,

5AL = —aAl, 2

where the constrained parameter d7a = 0 contains
three independent infinitesimal constant parameters of
SO(1,2).
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The action (2.1) is also invariant with respects to
the local U(n) invariance

X —gXg', Z—g2z A—gAdt+iget, (2.3)

where g(7) € U(n).

Let us demonstrate, in Hamiltonian formalism,
that the gauge model (2.1) is equivalent to the stan-
dard Calogero system.

The definitions of the momenta, corresponding to
the action (2.1),

(2.5)

and give us the following expression for the canonical
Hamiltonian

H= iTr(PXPX) — Ty (AT), (2.6)

where matrix quantity 7" is defined as
T=ilX,P|-2Z-Z+cl,. (2.7)

The preservation of the constraints (2.5b) in time
leads to the secondary constraints

T~0. (2.8)

The gauge fields A play the role of the Lagrange mul-
tipliers for these constraints.

Using canonical Poisson brackets [X?, P4], =
636° [Za, PY], = 60, [Z°, Py, = 6f, we obtain the

a-c?

Poisson brackets of the constraints (2.5a)
(G, Gy), = —id) . (2.9)

Dirac brackets for these second class constraints (2.5a)
eliminate spinor momenta P,, P, from the phase space.
The Dirac brackets for the residual variables take the
form

[X?, PY9], = 6460

a~c)

[Z4,2%, = —idk. (2.10)

The residual constraints (2.8) 7 = T form the
u(n) algebra with respect to the Dirac brackets

(T2, T, = i35 T — 6eT) (2.11)

and generate gauge transformations (2.3). Let us fix
the gauges for these transformations.
In the notations

o = X2, po =P (nosummation over a);

=Xt pb=PL fora#b

a
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the constraints (2.7) take the form
Ty = i(za —y)po — i(pa —py)zg + (2.12)
ZZ xpl — pSab) - Z2,72° =~ 0 fora#b,

ZZ apc_pa c

(no summation over a) .

a3
I

— 2,2+ c~0 (2.13)

The non-diagonal constraints (2.12) generate the
transformations

53:2 = [332, e Ty, ~i(xg — zp)ep .

Therefore, in case of the Calogero-like condition
ZTqFTp, we can impose the gauge

2 ~0. (2.14)

Then we introduce Dirac brackets for the con-
straints (2.12), (2.14) and eliminate 2%, p°. In par-
ticular, the resolved expression for pZ is

b v Zb
Do e —0) YAV AS (2.15)
The Dirac brackets of residual variables coincide with
Poisson ones due to the resolved form of the gauge
fixing condition (2.14).
After gauge-fixing (2.14), the constraints (2.13) be-
come

Z, 7% —ca0 (no summation over a)  (2.16)

and generate local phase transformations of Z,. For
these gauge transformations we impose the gauge
Z,— 7" =0. (2.17)

The conditions (2.16) and (2.17) eliminate Z, and Z*
completely.

Finally, using the expressions (2.15) and the condi-
tions (2.14), (2.16) we obtain the following expression
for the Hamiltonian (2.6)

Hy=-Tr(PP) =

Zpa +Z _xb )

a;éb

(2.18)

I I N

which corresponds to the standard Calogero action [1]

So = /dt Zxaxa—z%%)z] (2.19)

azb

3 N =2 superconformal
Calogero model

N = 2 supersymmetric generalization of the sys-
tem (2.1) is described by
e the even hermitian (n X n)-matrix superfield
xb(t,0,0), (X)T =X, a,b=1,...,n [supermulti-
plets (1,2,1)];
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e commuting chiral U(n)-spinor superfield
Zo(t,,0), 2, 0) = (Z), thrn = t + 60
[supermultiplets (2,2, 0)];

e commuting n? complex “bridge” superfields
be(t,0,0).

The N = 2 superconformally invariant action of
these superfields has the form

Sy = /dtd29 [Tx (DX DY) +
L (3.1)
§zeQVz—cTrV]

Here the covariant derivatives of the superfield 2 are

DX = DX +i[#,X], DX =DX+i[dX], (3.2)

D =0y +1i00,, D=-05—1i00,, {D,D}=—2i0,,

where the potentials are constructed from the bridges
as

= —ie®(De ),

o= —ie®(De ™) (b 3:3)

bt).

The gauge superfield prepotential V°(¢,6,0), (V)T =
V, is constructed from the bridges as

eV = e it (3.4)

The superconformal boosts of the N' = 2 supercon-
formal group SU(1,1|1) ~ OSp(2|2) have the following
realization:

5t = —i(nh + no)t,

o (3.5)
56 = n(t + i69) ,

50 = n(t —i60),

X = —i(nd +70) X,
b=0, SV =0.

0Z=0
" (3.6)

Its closure with N' = 2 supertranslations yields the full

N = 2 superconformal invariance of the action (3.1).
The action (3.1) is invariant also with respect to

the two types of the local U(n) transformations:

e T-transformations with the hermitian (n x n)-matrix

parameter 7(t,0,0) € u(n), ()7 = 7;

e \—transformations with complex chiral gauge param-

eters \(t,,0) € u(n), AM(ts,0) = (A\)*.

These U(n) transformations act on the superfields in

the action (3.1) as

s . . . ’
ib — T ezbe A 2V —

, e ezA 62\/6—1)\

e , (8.7

X' =e"Xe T, Z'=ePZ, Z'=Ze . (38)

In terms of 7-invariant superfields V, Z and new
hermitian (n x n)-matrix superfield

Z=exel, 2 = e Zem (3.9)

the action (3.1) takes the form

Sy = / dtd*¢ [Tr (22 92) +
] (3.10)
3 Ze?VzZ — cTrV]

where the covariant derivatives of the superfield 2 are

DX =DI+ e V(D) 2,

_ _ _ 3.11
DX =DX— 2V (De?V). (3.11)

For gauge A-transformations we impose the WZ
gauge B B
V(t,0,0) = —00A(t).
Then, the action (3.10) takes the form

Sy =S+ Sy,

_ _ 3.12
Sy = —iTr/dt (VY — VIV) (8.12)

where ¥ = DZ] and

VU =¥ 4+4[A,¥], VI =U+i[d, 7.

The bosonic core in (3.12) exactly coincides with the
Calogero action (2.19).

Exactly as in the pure bosonic case, residual lo-
cal U(n) invariance of the action (3.12) eliminates the
nondiagonal fields Xab, a#b, and all spinor fields Z,.
Thus, the physical fields in our A/ = 2 supersymmet-
ric generalization of the Calogero system are n bosons
Tq = X2 and 2n? fermions ¥8. These fields present
the on-shell content of n multiplets (1,2,1) and n>—n
multiplets (0,2,2) which are obtained from n? multi-
plets (1,2,1) by the gauging procedure [16]. We can
present it by the plot:

L= (X5, 08,00 . = (X5, W5, Ch),

(1,2,1) multiplets (1,2,1) multiplets
I gauging |

2.0 = (X2, 02,C%)  interact Q) = (W5, B2, CY), axb

(1,2,1) multiplets (072,2) multiplets

where the bosonic fields C%, C? and B? are auxiliary
components of the supermultiplets. Thus, we obtain
some new N = 2 extensions of the n-particle Calogero
models with n bosons and 2n? fermions as compared to
the standard N = 2 superCalogero with 2n fermions
constructed by Freedman and Mende [8].

4 N =4 superconformal
Calogero model
The most natural formulation of N' = 4,d = 1 su-

perfield theories is achieved in the harmonic super-
space [23] parametrized by

(t,ﬁi,ék,uii) ~ (t,Hi,éi,uii),
0F =o't 0F =6, i k=1,2.
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Commuting SU(2)-doublets u* are harmonic coordi-
nates [24], subjected by the constraints u'u; = 1.
The N = 4 superconformally invariant harmonic ana-
lytic subspace is parametrized by

(Cou) = (ta, 07,07, uf),  ta=t—i(0T0-+0707).

The integration measures in these superspaces are
g = dudtd*0 and pf ¥ = dud¢?.
The N = 4 supergauge theory related to our task
is described by:
e hermitian matrix superfields %(t,@i,éi,uf) =
(%Z) subjected to the constraints

7t =0, D79 =0,
T, (4.1)
(P9 +9 2 )2=0
[multiplets (1,4,3)];
e analytic superfields Z1({,u) = (Z;) subjected to
the constraint

gzt =0 (4.2)

[multiplets (4,4,0)];
e the gauge matrix connection VT (¢,u) =
(V++b)_
In (4.1) and (4.2) the covariant derivatives are defined
by
X =D 2 +i[VTT 2],
gttz+ — pttz+ 1yttt zT,

Also 7 = D¥, 7" = D" and the connections in 9,
9 are expressed through derivatives of V7.

The N = 4 superconformal model is described by
the action
Sa;ﬁO _ 1

4 = —m/MHTr (3&”‘1/“) + (4.3)
1

3 /uf;z) Vo ZTZH + %c/uf{z) TV,

The tilde in 2% denotes ‘hermitian’ conjugation pre-
serving analyticity [24, 23].

The unconstrained superfield Vo (¢, u) is a real ana-
lytic superfield, which is defined by the integral trans-
form (2o = Tr (2))

%(tva’méz) =
/duVo (tA,9+,9_+,ui)

ot =giuE, gt=giuFE '

The real number «a#0 in (4.3) coincides with
the parameter of the N' = 4 superconformal group
D(2,1; ) which is symmetry group of the action (4.3).
Field transformations under superconformal boosts
are (see the coordinate transformations in [23, 16])

0 =N 2,
SVt =0,

2t =AZT,
(4.4)

26

where A = 2ia(7- 0" —n=0%), Ag =2A— D"~ DTTA.
It is important that just the superfield multiplier Vy
in the action provides this invariance due to 6Vy =
—2AVy (note that 5uf4_2) =0).

The action (4.3) is invariant under the local U(n)
transformations:

2 = e Ze ZH = erzt,

V++/ — ei)\ V++ e—i)\ _ iei)\(D++€_i>\), (45)

where \b (¢, u®) € u(n) is the ‘hermitian’ analytic ma-
trix parameter, A = A. Using gauge freedom (4.5) we
choose the WZ gauge

VIt = 200701 A(ta). (4.6)

1
Considering the case a = ~3 (when D(2,1;0) ~

OSp(4]2)) in the WZ gauge and eliminating auxiliary
and gauge fields, we find that the action (4.3) has the
following bosonic limit

Sey :/dt {Za‘ca:'ca + % S(zpzk - zpzE) +

Tr(S.S)  nTr(SS)
> A(zq — 1) 2(X0)?

(4.7)
a#b

where

(Sa)i = 2020, (9)7 =Y [(sa)ij - %55(5@,6’6 .

a

The fields z, are “diagonal” fields in X = 2]. The
fields Z' define first components in Z*, Z¥| = Z'u}.
They are subject to the constraints

787 =¢  Va. (4.8)

These constraints are generated by the equations of
motion with respect to the diagonal components of
gauge field A. , 4

Using Dirac brackets [Z{, Z]],, = i6'6, which are
generated by the kinetic WZ term for Z, we find that
the quantities S, for each a form u(2) algebras

(S0 (S0)'] = i {B1(S)a = 6L(50).'}

Thus modulo center-of-mass conformal potential (up
to the last term in (4.7)), the bosonic limit (4.7) is none

other than the integrable U(2)-spin Calogero model in

1
the formulation of [25, 3]. Except for the case « = ——,

the action (4.3) yields non-trivial sigma-model type ki-
netic term for the field X = 2.

For a = 0 it is necessary to modify the transfor-
mation law of 2 in the following way [16]

Omod Z = Qi(ﬁkﬁk + éknk) . (4.9)
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Then the D(2,1; o = 0) superconformal action reads

— 1
R a— —Z/MHTr (e‘%) + (4.10)
1 _9) & ) _
5/,@(4 2)z+z++%c/uf4 DTyt

The D(2,1;a = 0) superconformal invariance is not
compatible with the presence of V in the WZ term
of the action (4.10), still implying the transformation
laws (4.4) for Z* and for V™' . This situation is
quite analogous to what happens in the N' = 2 su-
per Calogero model considered in Sect. 3, where the
center-of-mass supermultiplet Tr(2) decouples from
the WZ and gauge supermultiplets. Note that the
(matrix) 2 supermultiplet interacts with the (column)
Z supermultiplet in (3.1) and (4.10) via the gauge su-
permultiplet.

5 D(2,1;a) quantum mechanics

The n = 1 case of the N' = 4 Calogero-like model (4.3)
above (the center-of-mass coordinate case) amounts to
a non-trivial model of A/ = 4 superconformal mechan-
ics.

Choosing the WZ gauge (4.6) and eliminating the
auxiliary fields by their algebraic equations of motion,
we obtain that the action takes the following on-shell
form

S = S+ 5, (5.1)
Sy = /dt {xx + % (z2h — 22" - (5.2)
o (z2")? s Lk
T—A(zkz —C):|,
S = —é/ﬁt (G — o) + (5.3)
/(/) wkz(zzk
i,k
2 1420 /dt¢¢ 1%%)
3
The action (5.1) possesses D(2,1;a) superconfor-

mal invariance. Using the Nother procedure, we find
the D(2,1; ) generators. The quantum counterparts
of them are

) ) VAGAIN T}
Q = PV +2mT’“ + (5.4)

, (U, TFF)

1+ 2a)—r—

i1+ 20)———,

_ _ VAN A
Q: = PU, — 2ia="0 (5.5)

, (TP, T,)

1+ 20)——*"4

i(1+ 2a) X ,

St = 22XV +tQ!, S;=-2XT,;+tQ;. (5.6)

o (ZZF)? + 224 2%

1 2
H = P e (5.7)
2az<lzk>xp(ixpk) B
X2
(U TFR0,) (14 2a)?
(14 20) == 16Xx2
K= X2—t—{X P}+t*H
(5.8)

D—_1 L (X.Py+tH,

Jik = [Z“Z“ +2000R | 1Y = g, uk

| R L —% [Ty, T4 . (5.9)
The symbol (...) denotes Weyl ordering.

It can be directly checked that the genera-
tors (5.4)—(5.9) form the D(2,1;«) superalgebra

(Q'i,QF) = —2 <€ik€i/k’Tab+ (5.10)
el K gik _ (1+ a)Gabgiin’k') 7
[T, T = —i (2T 4 ebdpoc) | (5.11)
(397, 3M]) = —i (e*J 4 ' T*) | (5.12)
I CEH Ly g —i(e U A l/Izk)
[T, Q"] = ieslQV", (5.13)
(37, Qu'F] = jekliQaid),
[Jz j'7QLLk’i} _ Z-ek’(i'Qaj’)i

due to the quantum brackets

(X,P|=i, [Z'.Z;]=¢,
o T (5.14)
In (5.11)=(5.14) we use the notation Q?'" = —QF,
Q22’z‘ _ _Qi Qn’z‘ - g le’i - § T2 _ "

T =K, T?=-D
To find the quantum spectrum, we make use of the
realization

Z; = v, 7' =09/ov; (5.15)

7

for the bosonic operators where vj' is a commuting

complex SU(2) spinor, as well as the following realiza-
tion of the odd operators

=y, ¥ = —% 00", (5.16)

where 1) are complex Grassmann variables.
The full wave function ® = Ay + ' B; +¢'; As is
subjected to the constraints

22" =v —— & =cd. (5.17)
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Table 1
o J 1
Az(j)(xvv—k) \a\(c—;l)+1 g %
B (z,v") w - %sign(a) g - % 0
B/ (z,v7) w + %sign(a) g + % 0

Requiring the wave function ®(v™) to be single-valued
gives rise to the condition that positive constant c is
integer, ¢ € Z. Then (5.17) implies that the wave func-
tion ®(v") is a homogeneous polynomial in v;" of the
degree c:

® = A + B +yip ALY, (5.18)
AL = Ay, vt ot (5.19)
B = B/ 4 B/ = (5.20)

Of B, g TRyt 4

B&klmkc)v*'kl covthe
On the physical states (5.17), (5.18) the Casimir
operator takes the value

Co=T?+ad?—(1+a)L+ i Q¥ Quiri =

a(l+a)(c+1)%/4. (5.21)

On the same states, the Casimir operators of the
bosonic subgroups SU(1,1), SU(2), and SU(2),,

T? =ro(ro—1), J*=jG+1), IP=i(i+1),
take the values listed in the Table 1.

The fields B; and B, form doublets of SU(2) g gen-
erated by J* | whereas the component fields Ay =
(A1, Az) form a doublet of SU(2), generated by | G

Each of Ay, B, B! carries a representation of
the SU(1,1) group. Basis functions of these rep-

resentations are eigenvectors of the generator R =

1
3 (a_lK + aH) , where a is a constant of the length

dimension. These eigenvalues are r =19 +n, n € N.

6 Outlook

In [19, 20, 21], we proposed a new gauge approach
to the construction of superconformal Calogero-type
systems. The characteristic features of this approach
are the presence of auxiliary supermultiplets with WZ
type actions, the built-in superconformal invariance
and the emergence of the Calogero coupling constant
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as a strength of the FI term of the U(1) gauge (su-
per)field.

We see continuation of the researches presented in
the solution of some problems, such as

e An analysis of possible integrability properties of
new superCalogero models with finding-out a role
of the contribution of the center of mass in the
case of D(2,1; ), a0, invariant systems.

e Construction of quantum N = 4 superconfor-
mal Calogero systems by canonical quantization
of systems (4.3) and (4.10).

e Obtaining the systems, constructed from mirror
supermultiplets and possessing D(2, 1; ) symme-
try, after use gauging procedures in bi-harmonic
superspace [26].

e Obtaining other superextensions of the Calogero
model distinct from the A,,_1 type (related to the
root system of the SU(n) group), by applying the
gauging procedure to other gauge groups.
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