
Acta Polytechnica Vol. 50 No. 3/2010

Superconformal Calogero Models as a Gauged Matrix Mechanics

S. Fedoruk

Abstract

We present basics of the gauged superfield approach to constructing the N -superconformal multi-particle Calogero-type
systems developed in arXiv:0812.4276, arXiv:0905.4951 and arXiv:0912.3508. This approach is illustrated by multi-particle
systems possessing SU(1, 1|1) and D(2, 1;α) supersymmetries, as well as by the model of newN = 4 superconformal quantum
mechanics.

1 Introduction
The celebrated Calogero model [1] is a prime exam-
ple of an integrable and exactly solvable multi-particle
system. It describes the system of n identical parti-
cles interacting through an inverse-square pair poten-
tial

∑
a�=b

g/(xa − xb)
2, a, b = 1, . . . , n. The Calogero

model and its generalizations provide deep connections
of various branches of theoretical physics and have a
wide range of physical and mathematical applications
(for a review, see [2, 3]).
An important property of the Calogero model is

d = 1 conformal symmetry SO(1, 2). Being multi-
particle conformal mechanics, this model, in the two-
particle case, yields the standard conformal mechan-
ics [4]. Conformal properties of the Calogero model
and the supersymmetric generalizations of the latter
give possibilities to apply them in black hole physics,
since the near-horizon limits of extreme black hole
solutions in M -theory correspond to AdS2 geometry,
having the same SO(1, 2) isometry group. Analysis of
the physical fermionic degrees of freedom in the black
hole solutions of four- and five-dimensional supergrav-
ities shows that related d = 1 superconformal systems
must possess N = 4 supersymmetry [5, 6, 7].
Superconformal Calogero models with N = 2 su-

persymmetry were considered in [8, 9] and with N = 4
supersymmetry in [10, 11, 12, 13, 14, 15]. Unfortu-
nately, consistent Lagrange formulations for the n-
particle Calogero model with N = 4 superconformal
symmetry for any n is still lacking.
Recently, we developed a universal approach to su-

perconformal Calogero models for an arbitrary number
of interacting particles, including N = 4 models. It is
based on the superfield gauging of some non-abelian
isometries of d = 1 field theories [16].
Our gauge model involves three matrix superfields.

One is a bosonic superfield in the adjoint representa-
tion of U(n). It carries the physical degrees of free-
dom of the superCalogero system. The second super-
field is in the fundamental (spinor) representation of

U(n) and is described by Chern-Simons mechanical
action [17, 18]. The third matrix superfield accommo-
dates the gauge “topological” supermultiplet [16]. N -
extended superconformal symmetry plays a very im-
portant role in our model. Elimination of the pure
gauge and auxiliary fields gives rise to Calogero-like
interactions for the physical fields.
The talk is based on the papers [19, 20, 21].

2 Gauged formulation of the
Calogero model

The renowned Calogero system [1] can be described
by the following action [18, 22]:

S0 =
∫
dt

[
Tr (∇X∇X)+

i

2
(Z̄∇Z −∇Z̄Z) + cTrA

]
,

(2.1)

where

∇X = Ẋ + i[A, X ],

∇Z = Ż + iAZ ∇Z̄ = ˙̄Z − iZ̄A .

The action (2.1) is the action of U(n), d = 1 gauge the-
ory. The hermitian n×n-matrix field Xb

a(t), (Xb
a) =

Xa
b , a, b = 1, . . . , n and the complex commuting U(n)-
spinor field Za(t), Z̄a = (Za) present the matter,
scalar and spinor fields, respectively. The n2 “gauge
fields” Ab

a(t), (Ab
a) = Aa

b are non-propagating ones
in d = 1 gauge theory. The second term in the ac-
tion (2.1) is the Wess-Zumino (WZ) term. The third
term is the standard Fayet-Iliopoulos (FI) term.
The action (2.1) is invariant under the d = 1 con-

formal SO(1, 2) transformations:

δt = α, δXb
a =
1
2

α̇Xb
a,

δZa = 0, δAb
a = −α̇Ab

a ,
(2.2)

where the constrained parameter ∂3t α = 0 contains
three independent infinitesimal constant parameters of
SO(1, 2).
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The action (2.1) is also invariant with respects to
the local U(n) invariance

X → gXg†, Z → gZ, A→ gAg† + iġg† , (2.3)

where g(τ) ∈ U(n).
Let us demonstrate, in Hamiltonian formalism,

that the gauge model (2.1) is equivalent to the stan-
dard Calogero system.
The definitions of the momenta, corresponding to

the action (2.1),

PX = 2∇X , PZ =
i

2
Z̄ ,

P̄Z = −
i

2
Z , PA = 0

(2.4)

imply the primary constraints

a) G ≡ PZ −
i

2
Z̄ ≈ 0 , Ḡ ≡ P̄Z +

i

2
Z ≈ 0 ;

b) PA ≈ 0
(2.5)

and give us the following expression for the canonical
Hamiltonian

H =
1
4
Tr (PXPX)− Tr (AT ) , (2.6)

where matrix quantity T is defined as

T ≡ i[X, PX]− Z · Z̄ + cIn . (2.7)

The preservation of the constraints (2.5b) in time
leads to the secondary constraints

T ≈ 0 . (2.8)

The gauge fields A play the role of the Lagrange mul-
tipliers for these constraints.
Using canonical Poisson brackets [Xb

a, PX
d
c ]P =

δd
aδb

c, [Za, P b
Z
]
P
= δb

a, [Z̄
a, P̄Z b]P = δa

b , we obtain the
Poisson brackets of the constraints (2.5a)

[Ga, Ḡb]P = −iδa
b . (2.9)

Dirac brackets for these second class constraints (2.5a)
eliminate spinor momenta PZ, P̄Z from the phase space.
The Dirac brackets for the residual variables take the
form

[Xb
a, PX

d
c ]D = δd

aδb
c , [Za, Z̄b]

D
= −i δb

a . (2.10)

The residual constraints (2.8) T = T+ form the
u(n) algebra with respect to the Dirac brackets

[T b
a , T d

c ]D = i(δd
aT b

c − δb
cT

d
a ) (2.11)

and generate gauge transformations (2.3). Let us fix
the gauges for these transformations.
In the notations

xa ≡ Xa
a , pa ≡ PX

a
a (no summation over a) ;

xb
a ≡ Xb

a , pb
a ≡ PX

b
a for a �= b

the constraints (2.7) take the form

T b
a = i(xa − xb)pb

a − i(pa − pb)xb
a + (2.12)

i
∑

c

(xc
apb

c − pc
axb

c)− ZaZ̄b ≈ 0 for a �= b ,

T a
a = i

∑
c

(xc
apa

c − pc
axa

c )− ZaZ̄a + c ≈ 0 (2.13)

(no summation over a) .

The non-diagonal constraints (2.12) generate the
transformations

δxb
a = [x

b
a, εa

bT a
b ]D ∼ i(xa − xb)εa

b .

Therefore, in case of the Calogero-like condition
xa �=xb, we can impose the gauge

xb
a ≈ 0 . (2.14)

Then we introduce Dirac brackets for the con-
straints (2.12), (2.14) and eliminate xb

a, pb
a. In par-

ticular, the resolved expression for pb
a is

pb
a = −

i

(xa − xb)
ZaZ̄

b . (2.15)

The Dirac brackets of residual variables coincide with
Poisson ones due to the resolved form of the gauge
fixing condition (2.14).
After gauge-fixing (2.14), the constraints (2.13) be-

come

ZaZ̄
a − c ≈ 0 (no summation over a) (2.16)

and generate local phase transformations of Za. For
these gauge transformations we impose the gauge

Za − Z̄a ≈ 0 . (2.17)

The conditions (2.16) and (2.17) eliminate Za and Z̄a

completely.
Finally, using the expressions (2.15) and the condi-

tions (2.14), (2.16) we obtain the following expression
for the Hamiltonian (2.6)

H0 =
1
4
Tr (PXPX) =

1
4

⎛⎝∑
a

(pa)2 +
∑
a�=b

c2

(xa − xb)2

⎞⎠ ,
(2.18)

which corresponds to the standard Calogero action [1]

S0 =
∫
dt

[∑
a

ẋaẋa −
∑
a�=b

c2

4(xa − xb)2

]
. (2.19)

3 N = 2 superconformal
Calogero model

N = 2 supersymmetric generalization of the sys-
tem (2.1) is described by
• the even hermitian (n × n)-matrix superfield
X b

a (t, θ, θ̄), (X )+ = X , a, b = 1, . . . , n [supermulti-
plets (1,2,1)];
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• commuting chiral U(n)–spinor superfield
Za(tL, θ), Z̄a(tR, θ̄) = (Za)+, tL,R = t ± iθθ̄
[supermultiplets (2,2,0)];

• commuting n2 complex “bridge” superfields
bc
a(t, θ, θ̄).
The N = 2 superconformally invariant action of

these superfields has the form

S2 =
∫
dt d2θ

[
Tr

(
D̄X DX

)
+

1
2
Z̄ e2VZ − cTrV

]
.

(3.1)

Here the covariant derivatives of the superfield X are

DX = DX +i[A,X ] , D̄X = D̄X +i[Ā,X ] , (3.2)

D = ∂θ + iθ̄∂t , D̄ = −∂θ̄ − iθ∂t , {D, D̄} = −2i∂t ,

where the potentials are constructed from the bridges
as

A = −i eib̄(De−ib̄) ,

Ā = −i eib(D̄e−ib) (b̄ ≡ b+) .
(3.3)

The gauge superfield prepotential V b
a (t, θ, θ̄), (V )

† =
V , is constructed from the bridges as

e2V = e−ib̄ eib . (3.4)

The superconformal boosts of the N = 2 supercon-
formal group SU(1, 1|1) � OSp(2|2) have the following
realization:

δt = −i(ηθ̄ + η̄θ)t ,

δθ = η(t+ iθθ̄) , δθ̄ = η(t− iθθ̄) ,
(3.5)

δX = −i(ηθ̄ + η̄θ)X , δZ = 0 ,

δb = 0 , δV = 0 .
(3.6)

Its closure with N = 2 supertranslations yields the full
N = 2 superconformal invariance of the action (3.1).
The action (3.1) is invariant also with respect to

the two types of the local U(n) transformations:
• τ -transformations with the hermitian (n×n)-matrix
parameter τ(t, θ, θ̄) ∈ u(n), (τ)+ = τ ;
• λ–transformations with complex chiral gauge param-
eters λ(tL, θ) ∈ u(n), λ̄(tR, θ) = (λ)+.
These U(n) transformations act on the superfields in
the action (3.1) as

eib′ = eiτ eibe−iλ , e2V
′
= eiλ̄ e2V e−iλ , (3.7)

X ′ = eiτ X e−iτ , Z ′ = eiλZ , Z̄ ′ = Z̄ e−iλ̄ . (3.8)

In terms of τ -invariant superfields V , Z and new
hermitian (n× n)-matrix superfield

X = e−ib X eib̄ , X ′ = eiλ X e−iλ̄ , (3.9)

the action (3.1) takes the form

S2 =
∫
dt d2θ

[
Tr

(
D̄X e2V DX e2V

)
+

1
2
Z̄ e2VZ − cTrV

] (3.10)

where the covariant derivatives of the superfieldX are

DX = DX+ e−2V (De2V )X ,

D̄X = D̄X−X e2V (D̄e−2V ) .
(3.11)

For gauge λ-transformations we impose the WZ
gauge

V (t, θ, θ̄) = −θθ̄A(t) .

Then, the action (3.10) takes the form

S2 = S0 + SΨ2 ,

SΨ2 = −iTr
∫
dt (Ψ̄∇Ψ−∇Ψ̄Ψ)

(3.12)

where Ψ = DX| and

∇Ψ = Ψ̇ + i[A,Ψ] , ∇Ψ̄ = ˙̄Ψ + i[A, Ψ̄] .

The bosonic core in (3.12) exactly coincides with the
Calogero action (2.19).
Exactly as in the pure bosonic case, residual lo-

cal U(n) invariance of the action (3.12) eliminates the
nondiagonal fields Xb

a, a �=b, and all spinor fields Za.
Thus, the physical fields in our N = 2 supersymmet-
ric generalization of the Calogero system are n bosons
xa = Xa

a and 2n
2 fermions Ψb

a. These fields present
the on-shell content of n multiplets (1,2,1) and n2−n
multiplets (0,2,2) which are obtained from n2 multi-
plets (1,2,1) by the gauging procedure [16]. We can
present it by the plot:

X a
a = (X

a
a ,Ψa

a, Ca
a )︸ ︷︷ ︸

(1,2,1)multiplets

X b
a = (X

b
a,Ψb

a, Cb
a), a �=b︸ ︷︷ ︸

(1,2,1)multiplets

⇓ gauging ⇓

X a
a = (X

a
a ,Ψa

a, Ca
a )︸ ︷︷ ︸

(1,2,1)multiplets

interact Ωb
a = (Ψ

b
a, Bb

a, Cb
a), a �=b︸ ︷︷ ︸

(0,2,2)multiplets

where the bosonic fields Ca
a , C

b
a and Bb

a are auxiliary
components of the supermultiplets. Thus, we obtain
some new N = 2 extensions of the n-particle Calogero
models with n bosons and 2n2 fermions as compared to
the standard N = 2 superCalogero with 2n fermions
constructed by Freedman and Mende [8].

4 N = 4 superconformal
Calogero model

The most natural formulation of N = 4, d = 1 su-
perfield theories is achieved in the harmonic super-
space [23] parametrized by

(t, θi, θ̄
k, u±

i ) ∼ (t, θ±, θ̄±, u±
i ) ,

θ± = θiu±
i , θ̄± = θ̄iu±

i , i, k = 1, 2.
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Commuting SU(2)-doublets u±
i are harmonic coordi-

nates [24], subjected by the constraints u+iu−
i = 1.

The N = 4 superconformally invariant harmonic ana-
lytic subspace is parametrized by

(ζ, u) = (tA, θ+, θ̄+, u±
i ), tA = t−i(θ+θ̄−+θ−θ̄+) .

The integration measures in these superspaces are
μH = du dt d

4θ and μ
(−2)
A = du dζ(−2).

The N = 4 supergauge theory related to our task
is described by:
• hermitian matrix superfields X(t, θ±, θ̄±, u±

i ) =
(Xb

a) subjected to the constraints

D++X = 0, D+D− X = 0,

(D+D̄
−
+ D̄

+
D−)X = 0

(4.1)

[multiplets (1,4,3)];
• analytic superfields Z+(ζ, u) = (Z+a ) subjected to
the constraint

D++Z+ = 0 (4.2)

[multiplets (4,4,0)];
• the gauge matrix connection V ++(ζ, u) =
(V ++b

a).
In (4.1) and (4.2) the covariant derivatives are defined
by

D++X = D++X+ i [V ++, X],

D++Z+ = D++Z+ + i V ++Z+.

Also D+ = D+, D̄
+
= D̄+ and the connections in D−,

D̄
−
are expressed through derivatives of V ++.
The N = 4 superconformal model is described by

the action

Sα�=0
4 = − 1

4(1 + α)

∫
μH Tr

(
X−1/α

)
+ (4.3)

1
2

∫
μ
(−2)
A V0 Z̃+Z+ +

i

2
c

∫
μ
(−2)
A TrV ++ .

The tilde in Z̃+ denotes ‘hermitian’ conjugation pre-
serving analyticity [24, 23].
The unconstrained superfield V0(ζ, u) is a real ana-

lytic superfield, which is defined by the integral trans-
form (X0 ≡ Tr (X))

X0(t, θi, θ̄
i) =∫

duV0
(
tA, θ+, θ̄+, u±) ∣∣∣

θ±=θiu±
i

, θ̄±=θ̄iu±
i

.

The real number α�=0 in (4.3) coincides with
the parameter of the N = 4 superconformal group
D(2, 1;α) which is symmetry group of the action (4.3).
Field transformations under superconformal boosts
are (see the coordinate transformations in [23, 16])

δX = −Λ0X , δZ+ = ΛZ+,

δV ++ = 0 ,
(4.4)

where Λ = 2iα(η̄−θ+−η−θ̄+), Λ0 = 2Λ−D−−D++Λ.
It is important that just the superfield multiplier V0
in the action provides this invariance due to δV0 =
−2ΛV0 (note that δμ

(−2)
A = 0).

The action (4.3) is invariant under the local U(n)
transformations:

X ′ = eiλXe−iλ, Z+′ = eiλZ+,

V ++ ′ = eiλ V ++ e−iλ − i eiλ(D++e−iλ),
(4.5)

where λb
a(ζ, u±) ∈ u(n) is the ‘hermitian’ analytic ma-

trix parameter, λ̃ = λ. Using gauge freedom (4.5) we
choose the WZ gauge

V ++ = −2i θ+θ̄+A(tA). (4.6)

Considering the case α = −1
2
(when D(2, 1;α) �

OSp(4|2)) in the WZ gauge and eliminating auxiliary
and gauge fields, we find that the action (4.3) has the
following bosonic limit

S
α=−1/2
4,b =

∫
dt

{∑
a

ẋaẋa +
i

2

∑
a

(Z̄a
k Żk

a − ˙̄Za
kZk

a ) +

∑
a�=b

Tr(SaSb)
4(xa − xb)2

− nTr(ŜŜ)
2(X0)2

⎫⎬⎭ , (4.7)

where

(Sa)ij ≡ Z̄a
i Zj

a, (Ŝ)ij ≡
∑

a

[
(Sa)ij −

1
2
δj
i (Sa)kk

]
.

The fields xa are “diagonal” fields in X = X|. The
fields Zi define first components in Z+, Z+| = Ziu+i .
They are subject to the constraints

Z̄a
i Zi

a = c ∀ a . (4.8)

These constraints are generated by the equations of
motion with respect to the diagonal components of
gauge field A.
Using Dirac brackets [Z̄a

i , Zj
b ]D = iδa

b δj
i , which are

generated by the kinetic WZ term for Z, we find that
the quantities Sa for each a form u(2) algebras

[(Sa)i
j , (Sb)k

l]D = iδab

{
δl
i(Sa)k

j − δj
k(Sa)i

l
}

.

Thus modulo center-of-mass conformal potential (up
to the last term in (4.7)), the bosonic limit (4.7) is none
other than the integrable U(2)-spin Calogero model in

the formulation of [25, 3]. Except for the case α = −1
2
,

the action (4.3) yields non-trivial sigma-model type ki-
netic term for the field X =X|.
For α = 0 it is necessary to modify the transfor-

mation law of X in the following way [16]

δmodX = 2i(θkη̄k + θ̄kηk) . (4.9)
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Then the D(2, 1;α = 0) superconformal action reads

Sα=0
4 = −1

4

∫
μH Tr

(
eX

)
+ (4.10)

1
2

∫
μ
(−2)
A Z̃+Z+ + i

2
c

∫
μ
(−2)
A TrV ++ .

The D(2, 1;α = 0) superconformal invariance is not
compatible with the presence of V in the WZ term
of the action (4.10), still implying the transformation
laws (4.4) for Z+ and for V ++ . This situation is
quite analogous to what happens in the N = 2 su-
per Calogero model considered in Sect. 3, where the
center-of-mass supermultiplet Tr(X) decouples from
the WZ and gauge supermultiplets. Note that the
(matrix)X supermultiplet interacts with the (column)
Z supermultiplet in (3.1) and (4.10) via the gauge su-
permultiplet.

5 D(2, 1;α) quantum mechanics

The n = 1 case of the N = 4 Calogero-like model (4.3)
above (the center-of-mass coordinate case) amounts to
a non-trivial model of N = 4 superconformal mechan-
ics.
Choosing the WZ gauge (4.6) and eliminating the

auxiliary fields by their algebraic equations of motion,
we obtain that the action takes the following on-shell
form

S = Sb + Sf , (5.1)

Sb =
∫
dt

[
ẋẋ+

i

2

(
z̄kżk − ˙̄zkzk

)
− (5.2)

α2(z̄kzk)2

4x2
−A

(
z̄kzk − c

) ]
,

Sf = −i

∫
dt

(
ψ̄kψ̇k − ˙̄ψkψk

)
+ (5.3)

2α
∫
dt

ψiψ̄kz(iz̄k)

x2
+

2
3
(1 + 2α)

∫
dt

ψiψ̄kψ(iψ̄k)

x2
.

The action (5.1) possesses D(2, 1;α) superconfor-
mal invariance. Using the Nöther procedure, we find
the D(2, 1;α) generators. The quantum counterparts
of them are

Qi = PΨi + 2iα
Z(iZ̄k)Ψk

X
+ (5.4)

i(1 + 2α)
〈ΨkΨkΨ̄i〉

X
,

Q̄i = P Ψ̄i − 2iα
Z(iZ̄k)Ψ̄k

X
+ (5.5)

i(1 + 2α)
〈Ψ̄kΨ̄kΨi〉

X
,

Si = −2XΨi + tQi, S̄i = −2XΨ̄i + t Q̄i . (5.6)

H =
1
4

P 2 + α2
(Z̄kZk)2 + 2Z̄kZk

4X2
− (5.7)

2α
Z(iZ̄k)Ψ(iΨ̄k)

X2
−

(1 + 2α)
〈ΨiΨi Ψ̄kΨ̄k〉
2X2

+
(1 + 2α)2

16X2
,

K = X2 − t
1
2
{X, P}+ t2H ,

D = −1
4
{X, P}+ tH ,

(5.8)

Jik = i
[
Z(iZ̄k) + 2Ψ(iΨ̄k)

]
, I1

′1′ = −iΨkΨk ,

I2
′2′ = iΨ̄kΨ̄k , I1

′2′ = − i

2
[Ψk, Ψ̄k] . (5.9)

The symbol 〈. . .〉 denotes Weyl ordering.
It can be directly checked that the genera-

tors (5.4)–(5.9) form the D(2, 1;α) superalgebra

{Qai′i,Qbk′k} = −2
(
εikεi′k′

Tab + (5.10)

αεabεi′k′
Jik − (1 + α)εabεikIi

′k′
)

,

[Tab,Tcd] = −i
(
εacTbd + εbdTac

)
, (5.11)

[Jij ,Jkl] = −i
(
εikJjl + εjlJik

)
, (5.12)

[Ii
′j′ , Ik

′l′ ] = −i
(
εikIj

′l′ + εj′l′Ii
′k′)

,

[Tab,Qci′i] = iεc(aQb)i′i, (5.13)

[Jij ,Qai′k] = iεk(iQai′j),

[Ji′j′ ,Qak′i] = iεk′(i′Qaj′)i

due to the quantum brackets

[X, P ] = i , [Zi, Z̄j ] = δi
j ,

{Ψi, Ψ̄j} = −
1
2

δi
j .

(5.14)

In (5.11)–(5.14) we use the notation Q21
′i = −Qi,

Q22
′i = −Q̄i, Q11

′i = Si, Q12
′i = S̄i, T22 = H,

T11 = K, T12 = −D.
To find the quantum spectrum, we make use of the

realization

Z̄i = v+i , Zi = ∂/∂v+i (5.15)

for the bosonic operators where v+i is a commuting
complex SU(2) spinor, as well as the following realiza-
tion of the odd operators

Ψi = ψi, Ψ̄i = −
1
2

∂/∂ψi , (5.16)

where ψi are complex Grassmann variables.
The full wave function Φ = A1 +ψiBi +ψiψiA2 is

subjected to the constraints

Z̄iZ
iΦ = v+i

∂

∂v+i
Φ = cΦ. (5.17)
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Table 1

r0 j i

A
(c)
k′ (x, v+)

|α|(c+ 1) + 1
2

c

2
1
2

B
′(c)
k (x, v+)

|α|(c+ 1) + 1
2

− 1
2
sign(α)

c

2
− 1
2
0

B
′′(c)
k (x, v+)

|α|(c+ 1) + 1
2

+
1
2
sign(α)

c

2
+
1
2
0

Requiring the wave function Φ(v+) to be single-valued
gives rise to the condition that positive constant c is
integer, c ∈ Z. Then (5.17) implies that the wave func-
tion Φ(v+) is a homogeneous polynomial in v+i of the
degree c:

Φ = A
(c)
1 + ψiB

(c)
i + ψiψiA

(c)
2 , (5.18)

A
(c)
i′ = Ai′,k1...kcv

+k1 . . . v+kc , (5.19)

B
(c)
i = B

′(c)
i +B

′′(c)
i = (5.20)

v+i B′
k1...kc−1v

+k1 . . . v+kc−1 +

B′′
(ik1...kc)v

+k1 . . . v+kc .

On the physical states (5.17), (5.18) the Casimir
operator takes the value

C2 =T2 + αJ2 − (1 + α) I2 +
i

4
Qai′iQai′i =

α(1 + α)(c+ 1)2/4 . (5.21)

On the same states, the Casimir operators of the
bosonic subgroups SU(1, 1), SU(2)R and SU(2)L,

T2 = r0(r0 − 1) , J2 = j(j+1) , I2 = i(i+1) ,

take the values listed in the Table 1.
The fields B′

i and B′′
i form doublets of SU(2)R gen-

erated by Jik , whereas the component fields Ai′ =
(A1, A2) form a doublet of SU(2)L generated by I

i′k′
.

Each of Ai′ , B′
i, B′′

i carries a representation of
the SU(1,1) group. Basis functions of these rep-
resentations are eigenvectors of the generator R =
1
2

(
a−1K+ aH

)
, where a is a constant of the length

dimension. These eigenvalues are r = r0 + n, n ∈ N.

6 Outlook
In [19, 20, 21], we proposed a new gauge approach
to the construction of superconformal Calogero-type
systems. The characteristic features of this approach
are the presence of auxiliary supermultiplets with WZ
type actions, the built-in superconformal invariance
and the emergence of the Calogero coupling constant

as a strength of the FI term of the U(1) gauge (su-
per)field.
We see continuation of the researches presented in

the solution of some problems, such as
• An analysis of possible integrability properties of
new superCalogero models with finding-out a role
of the contribution of the center of mass in the
case of D(2, 1;α), α�=0, invariant systems.

• Construction of quantum N = 4 superconfor-
mal Calogero systems by canonical quantization
of systems (4.3) and (4.10).

• Obtaining the systems, constructed from mirror
supermultiplets and possessing D(2, 1;α) symme-
try, after use gauging procedures in bi-harmonic
superspace [26].

• Obtaining other superextensions of the Calogero
model distinct from the An−1 type (related to the
root system of the SU(n) group), by applying the
gauging procedure to other gauge groups.
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