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Coherent State Quantization and Moment Problem
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Abstract

Berezin-Klauder-Toeplitz (“anti-Wick”) or “coherent state” quantization of the complex plane, viewed as the phase space
of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian) coherent
states. The construction of these states and their attractive properties are essentially based on the energy spectrum of
the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of
non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of
a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of
coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this
procedure takes into account the circle topology of the classical motion.

1 Introduction
One of the most interesting properties of standard or
Glauber coherent states |z〉 [1, 2, 3, 4] is the Bayesian
duality [5, 6] that they encode between the discrete
Poisson probability distribution, n �→ e−|z|2 |z|2/n!,
of obtaining n quantum excitations (“photons” or
“quanta”) in a measurement through some counting
device, and the continuous Gamma probability distri-
bution measure |z|2 �→ e−|z|2|z|2/n! on the classical
phase space. For this latter distribution, |z|2 is itself a
random variable, denoting the average number of pho-
tons, given that n photons have been counted. Such a
duality underlies the construction of all types of coher-
ent state families, provided they satisfy a resolution of
the unity condition. It turns out that this condition
is equivalent to setting up a “positive operator valued
measure” (POVM) [7, 4] on the phase space. Such
a measure, in turn, leads to the quantization of the
classical phase space, which associates to each point
z ≡ (q + ip)/

√
2 the one dimensional projection op-

erator Pz, projecting onto to the subspace generated
by the coherent state vector, and then for z �= z′,
PzPz′ �= Pz′Pz). This “Berezin-Klauder-Töplitz”
quantization (or “anti-Wick”) [1, 8, 9] turns out, in
this case, to be equivalent to the canonical quantiza-
tion procedure. Clearly, this non-commutative version
of the complex plane is intrinsically based on the non-
negative integers (appearing in the n! term). We then
follow a similar path by considering sequences of non-
negative numbers which are far or not from the natural
numbers [10]. The resulting quantizations will then be
looked upon as generalizations of the one yielded by
the standard coherent states.
We illustrate our approach with the elementary

model of the 2-d motion of a charged particle in a
uniform magnetic field [11, 12]. By using a solution to
a version of the Stieltjes moment problem [13, 14] we
construct a family of coherent states for this model.

We prove that these states form an overcomplete set
that is normalized and resolves the unity. We then
carry out the corresponding coherent state quantiza-
tion and we examine the consequences in terms of its
probabilistic, functional, and localization aspects.
This article is organized as follows. In Section 2,

we briefly review the standard coherent states and the
way they allow painless quantization of the complex
plane viewed as a phase space. The so-called non-
linear coherent states built from arbitrary sequences
of numbers are described in Section 3 and we show
how the moment problem immediately emerges from
the exigence of unity resolution. If the positive case,
the corresponding quantization of the complex plane
is described in Section 4. In Section 5 we apply our
formalism to the motion of a charged particle in a uni-
form magnetic field. There exist two families of coher-
ent states for such a model, namely the Malkin-Man’ko
states [15], which are just tensor products of standard
coherent states, and the Kowalski-Rembielinski states
[16]. By introducing a kind of squeezing parameter
q = eλ > 1 we extend the definition of the latter
and solve the corresponding Stieltjes moment prob-
lem. This allows us to proceed with the quantization
of the physical quantities and illustrate our study with
numerical investigation.

2 Quantization with standard
coherent states and

A short review of standard CS

Let H be a separable (complex) Hilbert space with
orthonormal basis e0, e1, . . . , en ≡ |en〉, . . .. To each
complex number z ∈ C there corresponds the follow-
ing vector in H:

|z〉 =
∞∑

n=0

e−
|z|2
2

zn

√
n!
|en〉 . (1)
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Such vectors are the well-known Glauber-Klauder-
Schrödinger-Sudarshan coherent states or standard co-
herent states. They are distinguished by many prop-
erties. Here we particularly retain the following.
(i) 〈z|z〉 = 1 (normalization).
(ii) The map C � z �→ |z〉 is continuous (continuity).
(iii) The map N ∈ n �→ |〈en|z〉|2 = e−|z|2|z|2n/n!

is a Poisson probability distribution with aver-
age number of occurrences equal to |z|2 (discrete
probabilistic content).

(iv) The map C � z �→ |〈en|z〉|2 = e−|z|2 |z|2n/n! is
a Gamma probability distribution (with respect
to the square of the radial variable) with n as
a shape parameter (continuous probabilistic
content).

(v) There holds resolution of the unity in H:

I =
∫
C

d2z
π
Pz , (2)

where Pz = |z〉〈z| is the orthogonal projector
on vector |z〉 and the integral should be under-
stood in the weak sense. The proof is straight-
forward and stems from the orthogonality of the
Fourier exponentials and from the integral expres-
sion of the gamma function which solves the mo-
ment problem for the factorial n!∫

C

d2z
π
Pz =

∞∑
n,n′=0

|en〉〈en′ | 1√
n!n′!

·

∫
C

d2z
π

e−|z|2znz̄n′
= (3)

∞∑
n=0

|en〉〈en′ | = I .

Berezin-Klauder-Toeplitz-“anti-Wick”
quantization or “coherent state quantization”

Property (v) allows to define
1. a normalized positive operator-valued measure
(POVM) on the complex plane equipped with

its Lebesgue measure
d2z
π
and its σ−algebra F

of Borel sets:

F � Δ �→
∫
Δ

d2z
π
Pz ∈ L(H)+ , (4)

where L(H)+ is the cone of positive bounded op-
erators on H.

2. a quantization of the complex plane, which
means that to a function f(z, z̄) in the complex
plane there corresponds the operator Af in H
defined by

f �→ Af =
∫
C

d2z
π

f(z, z̄)Pz =

∞∑
n,n′=0

|en〉〈en′ | 1√
n!n′!

· (5)

∫
C

d2z
π

f(z, z̄)e−|z|2znz̄n′

provided that weak convergence holds.

For the simplest functions f(z) = z and f(z) = z̄ we
obtain

Az = â , â |en〉 =
√

n|en−1〉 , (6)

â|e0〉 = 0 , (lowering operator)

Az̄ = â† , â† |en〉 =
√

n+ 1|en+1〉 (7)

(raising operator) .

These two basic operators obey the canonical com-

mutation rule : [â, â†] = I. The number operator

N̂ = â†â is such that its spectrum is exactly N with
eigenvectors en : N̂ |en〉 = n|en〉. The fact that the
complex plane has become non-commutative is appar-
ent from the quantization of the real and imaginary

parts of z =
1√
2
(q + ip):

Aq
def
= Q =

1√
2
(â+ â†) , (8)

Ap
def
= P =

1√
2i
(â− â†) , [Q, P ] = iI .

3 Coherent states for generic
sequences

Let X = {xn}n∈N be a strictly increasing sequence
such that x0 = 0 and lim

n→∞
xn = ∞. Then its associ-

ated exponential

E(t) =
+∞∑
n=0

tn

xn!
, xn! ≡ x1x2 · · ·xn , x0! = 1 , (9)

has an infinite convergence radius. Associated “co-
herent states” (“non-linear CS” in Quantum Optics)
read as elements of H, a separable Hilbert space with
orthonormal basis {|en〉 , n ∈ N}:

|vz〉 =
∞∑

n=0

1√
E(|z|2)

zn

√
xn!

|en〉 . (10)

These vectors still enjoy some properties similar to the
standard ones.
(i) 〈vz|vz〉 = 1 (normalization).
(ii) The map C � z �→ |vz〉 is continuous (continu-
ity).
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(iii) The map N ∈ n �→ |〈en|vz〉|2 =
|z|2n

E(|z|2)xn!
is a

Poisson-like distribution with average number of
occurrences equal to |z|2 (discrete probabilistic
content).

Consider the discrete probability distribution with pa-
rameter t ≥ 0:

n �→ p(n; t) =
1
E(t)

tn

xn!
. (11)

The average of the random variable n �→ xn is
〈xn〉 = t. Contrariwise to the standard case X = N,

the continuous (gammalike) distribution t �→ 1
E(t)

tn

xn!
with parameter n is not a probability distribution with
respect to the Lebesgue measure dt:∫ +∞

0

dt
E(t)

tn

xn!
def
= μn �= 1 . (12)

Finding the right measure amounts to solve a usually
intractable moment problem. So, the map C � z �→
|〈en|vz〉|2 = |z|2n/

(
E(|z|2)xn!

)
is not a (Gamma-like)

probability distribution (with respect to the square of
the radial variable in the complex plane) with xn+1 as
a shape parameter, and this is a serious setback for the
Berezin-Toeplitz quantization program. Indeed there
is no reason to get now the resolution of the unity:
with Pz = |vz〉〈vz |,∫

C

d2z
π
Pz =

∞∑
n,n′=0

|en〉〈(en′ | 1√
xn!x′

n!
·

∫
C

d2z
π

1
E(|z|2)z

nz̄n′
= (13)

∞∑
n=0

1
xn!
I(n)|en〉〈(en| def= F .

Here F is a diagonal operator determined by the se-

quence of integrals I(n) =
∫ +∞

0
tn
dt
E(t) . These in-

tegrals form a sequence of Stieltjes moments for the

measure
dt
E(t) .

If the moment problem has a solution. Sup-
pose that the Stieltjes moment problem [13, 14] has
a solution for the sequence (xn!)n∈N, i.e. there exists
a probability distribution t �→ w(t) on [0,+∞) with
infinite support such that

xn! =
∫ +∞

0
tn w(t) dt . (14)

We know that a necessary and sufficient condition for
this is that the two matrices⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 x1! x2! . . . xn!

x1! x2! x3! . . . xn+1!

x2! x3! x4! . . . xn+2!
...

...
...

. . .
...

xn! xn+1! xn+2! . . . x2n!

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1! x2! x3! . . . xn+1!

x2! x3! x4! . . . xn+2!

x3! x4! x5! . . . xn+3!
...

...
...

. . .
...

xn+1! xn+2! xn+3! . . . x2n+1!

⎞⎟⎟⎟⎟⎟⎟⎟⎠
have strictly positive determinants for all n. Then, a
natural approach is just to modify the measure on C

by including the weight w(|z|2) E(|z|2). We then ob-
tain the resolution of the identity:∫

C

d2z
π

w(|z|2) E(|z|2) Pz =

∞∑
n,n′=0

|en〉〈(en′ | 1√
xn!x′

n!
· (16)

∫
C

d2z
π

w(|z|2) znz̄n′
=

∞∑
n=0

1
xn!

∫ +∞

0
tn w(t) dt |en〉〈(en| = I .

If the moment problem is solved by a measure t �→
w(t), then the vectors |vz〉 enjoy all needed properties
for quantization:
(iv) The map C � z �→ |〈en|vz〉|2 = |z|2n/

(
E(|z|2)xn!

)
is a (Gamma-like) probability distribution (with
respect to the square of the radial variable) with
xn+1 as a shape parameter and with respect to
the modified measure on the complex plane

ν(dz)
def
= w(|z|2) E(|z|2) d

2z

π
. (17)

Note that we might face with (xn!) an indetermi-
nate moment sequence, which means that there
are several representing measures. Then to each
such a measure there corresponds a probability
distribution on the classical phase space to be in-
terpreted in terms of statistical mechanics.

If the moment problem has no (explicit) solu-
tion. See an alternative in [10].

4 CS quantization with
sequence X

If the moment problem has an explicit solution, one
can proceed with the corresponding CS quantization
of the complex plane since the family of vectors |vz〉
solves the unity : with Pz = |vz〉〈vz |,∫

C
ν(dz) Pz =

∞∑
n,n′=0

|en〉〈en′ | 1√
xn!xn′ !

·

∫
C

d2z
π

w(|z|2)znz̄n′
= (18)

∞∑
n=0

1
xn!
|en〉〈en| = I ,

32



Acta Polytechnica Vol. 50 No. 3/2010

We proceed with this quantization like in the standard
case: to a function f(z, z̄) in the complex plane there
corresponds the operator Af in H defined by

f �→ Af =
∫
C

d2z
π

f(z, z̄)w(|z|2) E(|z|2) Pz =

∞∑
n,n′=0

|en〉〈en′ | 1√
xn!xn′ !

· (19)

∫
C

d2z
π

w(|z|2) f(z, z̄)znz̄n′

provided that weak convergence holds. For the sim-
plest functions f(z, z̄) = z and f(z, z̄) = z̄ we obtain

Az = â , â |en〉 =
√

xn [en−1〉 , (20)

â |e0〉 = 0 , (lowering operator)

Az̄ = â† , â† |en〉 =
√

xn+1 |en+1〉 (21)

(raising operator) .

These two basic operators obey the commutation rule :

[â, â†] = xN+1 − xN
def
= ΔN . The operator xN is de-

fined by xN = â†â and is such that its spectrum is ex-
actly the sequence X with eigenvectors en : xN |en〉 =
xn |en〉. The triple {â, â†,ΔN} equipped with the op-
erator commutator [· , ·] generates (generically) an in-
finite Lie algebra which replaces the Weyl-Heisenberg
Lie algebra. The quantization of the real and imagi-

nary parts of z =
1√
2
(q + ip) yields position and mo-

mentum operators corresponding to the sequence X ,

Aq
def
= Q =

1√
2
(â+ â†) , (22)

Ap
def
= P =

1√
2i
(â− â†) , [Q, P ] = iΔN ,

together with new quantum localization properties.

5 An example: charged
particle in a magnetic field

Consider a classical nonrelativistic particle, charge−e,
moving in the plane

(
x1, x2

)
and interacting with

a constant and uniform magnetic field of intensityB
perpendicular to the plane, described by a vector
potential A only (A0 = 0). The Hamiltonian of

the particle is H(x,p) =
1
2μ

[
p+

e

c
A (x)

]2
, x =(

x1, x2
)
, p = (p1, p2). With the symmetric gauge

Âi = −B

2
εij x̂

j , i, j, k = 1, 2, the quantum Hamil-

tonian takes the form Ĥ =
1
2μ

(
P̂ 21 + P̂ 22

)
. The P̂i,

i = 1, 2, are components of the kinematic momentum
operator,

P̂i = p̂i −
eB

2c
εij x̂

j ,
[
P̂1, P̂2

]
= −ih̄

eB

c
, (23)

where εij is the Levi-Civita symbol.

Kowalski & Rembielinski coherent states

Kowalski and Rembielinski [16] have proposed the con-
struction of CS for a particle in a uniform magnetic
field by using their coherent states for the circle [17].
The latter are constructed from the angular momen-
tum operator Ĵ and the unitary operator Û that rep-
resents the position of the particle on the unit circle.
These operators obey the commutation relations[

Ĵ , Û
]
= U ,

[
Ĵ , Û+

]
= −Û+ . (24)

The introduction of these coherent states permits to
avoid the problem of the infinite degeneracy present
in the approach followed by Man’ko and Malkin [15],
and, in addition, takes into in account the momentum
part of the phase space. Consequently, the so obtained
CS offer a better way to compare the quantum behav-
ior of the system with the classical trajectories in the
phase space.
Let us introduce the centre-coordinate operators

x̂10 = x̂1 − 1
μω

P̂2 , x̂20 = x̂2 +
1

μω
P̂1 , (25)

where ω = eB/μ is the cyclotron frequency. The x̂i
0

are integral of motion, [H, x̂i
0] = 0. Relative motion

coordinate operators,

r̂1 = x̂1 − x̂10 =
1

μω
P̂2 , (26)

r̂2 = x̂2 − x̂10 = −
1

μω
P̂1 .

Introduce now the operators

r̂0± = x̂10 ± ix̂20 , (27)

r̂± = r̂1 ± ir̂2 =
1

μω
(P̂2 ∓ iP̂1) .

They obey the commutation rules

[r̂0+, r̂0−] = 2
h̄

μω
, [r̂+, r̂−] = −2

h̄

μω
, (28)

[r̂0±, r̂±] = 0 .

The “relative” angular momentum operator Ĵ is pro-
portional to the Hamiltonian

Ĵ = r̂1P̂2 − r̂2P̂1 = −
2
ω

Ĥ = (29)

μωr̂+r̂− + h̄ = μωr̂−r̂+ − h̄ .

Due to the rules,

[J, r̂0±] = 0 , [J, r̂±] = ±2h̄r̂± , (30)

Ĵ can be viewed as the generator of rotations about
the axis passing through the classical point (x10, x

2
0)
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and perpendicular to the (x1, x2) plane. The nonuni-
tary operator r̂− describes to a certain extent the an-
gular position of the particle on a circle. The sym-
metries and the integrability of the model can be
encoded into the two independent Weyl-Heisenberg
algebras, one for the center of circular orbit and
the other for the relative motion. They allow one
to construct the Fock space with orthonormal basis
{|m, n〉 ≡ |m〉 ⊗ |n〉, m, n ∈ Z}, as repeated actions of
the raising operators r̂0− and r̂+,

r̂0−|m〉 =

√
2h̄(m+ 1)

μω
|m+ 1〉 , (31)

r̂+|n〉 =

√
2h̄(n+ 1)

μω
|n+ 1〉 .

r̂0+|m〉 =

√
2h̄m

μω
|m− 1〉 , (32)

r̂−|n〉 =
√
2h̄n

μω
|n− 1〉 ,

and the eigenvalue equation

Ĵ |m, n〉 = (2n+ 1) h̄ |m, n〉 . (33)

The K&R CS |z0, ζ〉 are constructed in the Hilbert
space spanned by the orthonormal basis as solution to
the eigenvalue equation:

r̂0+ |z0, ζ〉 = z0 |z0, ζ〉 , (34)

Ẑ |z0, ζ〉 = ζ |z0, ζ〉 , z0, ζ ∈ C ,

where Ẑ = e
1
2 (Ĵ/h̄+1)r̂−. The projection of these CS

in this Fock basis reads as

〈m, n| ζ, z0〉 =
e−

|z̃0|2
2√

E(|ζ̃|2)

z̃m
0√
m!

ζ̃n

√
n!

e−
1
2n(n+1) , (35)

where z̃0 =

√
μω

2h̄
z0 , ζ̃ =

√
μω

2h̄
ζ. The normaliza-

tion factor involves the function

E (t) =
∞∑

n=0

e−n(n+1) t
n

n!
≡

∞∑
n=0

tn

xn!
, (36)

where we recognize a generalized exponential with
xn ≡ e2nn.

Squeezing/deforming the K& R states

The introduction of a “squeezing” parameter λ allows
us to generalize the previous CS of a charged particle
in a uniform magnetic field as an eigenvector of the
commuting operators r̂0+ and Ẑλ,

r̂0+ |z0, ζ〉 = z0 |z0, ζ〉 , Ẑλ |z0, ζ〉 = ζ |z0, ζ〉 ,

Ẑλ = exp

[
λ

4

(
Ĵ/h̄+ 1

)]
r̂− . (37)

Operator Ẑλ coincides with the K& R Ẑ for λ = 2, and
with just r̂− for λ = 0, i.e., the case of Malkin-Man’ko
CS, which are actually tensor products of standard
CS. Operator Ẑλ controls the dispersion relations of
the angular momentum Ĵ and of the “position opera-
tor” r̂−. The corresponding CS read:

|z0, ζ〉 =
e−

|z̃0|2
2√

Eλ

(∣∣∣ζ̃∣∣∣2)
∑
m,n

z̃m
0√
m!

ζ̃n

√
xn!

|m, n〉 , (38)

with Eλ (t) =
∞∑

n=0

tn/xn! and xn ≡ enλn. The complex

numbers z0 and ζ parameterize, respectively, the posi-
tion of the centre of the circle and the classical phase
space state of the circular motion. Some properties
of these CS make them more suitable with regard to
the semi-classical behavior of a charged particle in a
magnetic field, in comparison with the Malkin-Man’ko
CS. The generalization involving λ allows one to ex-
hibit better these interesting characteristics.

Resolution of the moment problem

The λ-CS |z0, ζ〉 are the tensor product of the states
|z0〉 and |ζ〉, where the first one is a standard CS. So,
in order to perform the CS quantization, we concen-
trate only on the states |ζ〉. For convenience, we put
μω/2h̄ = 1, and so ζ̃ = ζ. Then, in the Fock basis
{|n〉},

|ζ〉 = 1√
Eλ|ζ|2)

+∞∑
n=0

ζn

√
xn!

|n〉 ,

Eλ(t) =
+∞∑
n=0

t

xn!
, xn = eλn n .

They resolve the unity in the Fock space spanned by
the kets |n〉,∫

C
�λ

(
|ζ|2

) d2ζ

π
|ζ〉 〈ζ| = I .

The weight function �λ solves the moment problem∫ ∞

0
tn�λ (t) dt = n! exp

{
λn (n+ 1)
2

}
≡ xn! , (39)

λ ≥ 0 ,

and is given under the form of the Laplace transform,

�λ (t) =
e−λ/2

√
2πλ

∫ +∞

0
du exp

(
−e−λ/2tu

)
e−

(lnu)2

2λ =

e−λ/2

√
2πλ

L
[
e−

(lnu)2

2λ

] (
e−λ/2t

)
.
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Fig. 1: Error function as a function of l for λ = 2 (solid
line), λ = 4 (dashed line) and λ = 6 (dotted line). We see
that, with the λ-CS, this approximation can be improved,
for |l| ≤ 1, by increasing the value of λ

CS quantization

The corresponding CS quantization of functions on the
complex plane is the map

f
(
ζ, ζ̄

)
�→

∫
C

d2ζ
π

�λ

(
|ζ|2

)
· (40)

f
(
ζ, ζ̄

)
Eλ

(
|ζ|2

)
|ζ〉 〈ζ| def= f̂ .

As expected, the CS quantization of the variables ζ
and ζ̄ yields

ζ �→ ζ̂ = Ẑλ , ζ̄ �→ ζ̂ = Ẑ
†
λ . (41)

Numerical analysis

One convenient criterion to evaluate the closeness of
the introduced λ-CS to the classical phase space con-
sists in verifying how closely the expectation value of
the angular momentum operator approaches the re-
spective classical quantity. This can be implemented
through the evaluation of the relative error

e(λ, l) =
|(〈Ĵ〉ζ/h̄− l)|

l
, (42)

with the expectation value of the angular momentum
given by

〈Ĵ〉ζ = 〈ζ|Ĵ |ζ〉 = 1
Eq(|ζ|2)

+∞∑
n=0

|ζ|2n (2n+ 1)
xn!

,

xn = e
λ
2 n n .

The parameter ζ are related with the classical angular
momentum l = μωr2 (where r is the classical radius)
by

|ζ| =

√
l

μω
exp(

λ

4
l) .

Kowalski and Rembielinski observed that the approx-
imate equality 〈Ĵ〉ζ � l does not hold for arbitrary
small l, being really acceptable for |l| > 1 only.
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