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Two-particle Harmonic Oscillator in a One-dimensional Box
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Abstract

We study a harmonic molecule confined to a one-dimensional box with impenetrable walls. We explicitly consider the
symmetry of the problem for the cases of different and equal masses. We propose suitable variational functions and
compare the approximate energies given by the variation method and perturbation theory with accurate numerical ones
for a wide range of values of the box length. We analyze the limits of small and large box size.

Keywords: harmonic oscillator, diatomic molecule, confined system, one-dimensional box, point symmetry, avoided
crossings, perturbation theory, variational method.

1 Introduction

During the last decades, there has been great interest in the model of a harmonic oscillator confined to boxes
of different shapes and sizes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Such
a model has been suitable for the study of several physical problems, ranging from dynamical friction in star
clusters [4] to magnetic properties of solids [6] and impurities in quantum dots [23].
One of the most widely studied models is given by a particle confined to a box with impenetrable walls at

−L/2 and L/2 bound by a linear force that produces a parabolic potential–energy function V (x) = k(x−x0)2/2,
where |x0| < L/2. When x0 = 0 the problem is symmetric and the eigenfunctions are either even or odd; such
symmetry is broken when x0 
= 0. Although interesting in itself, this model is rather artificial because the cause
of the force is not specified. It may, for example, arise from an infinitely heavy particle clamped at x0. In such
a case we think that it is more interesting to consider that the other particle also moves within the box.
The purpose of this paper is to discuss the model of two particles confined to a one-dimensional box with

impenetrable walls. For simplicity we assume that the force between them is linear. In Sec. 2 we introduce
the model and discuss some of its general mathematical properties. In Sec. 3 we discuss the solutions of the
Schrödinger equation for small box lengths by means of perturbation theory. In Sec. 4 we consider the regime of
large boxes and propose suitable variational functions. In Sec. 5 we compare the approximate energies provided
by perturbation theory and the variational method with accurate numerical methods. Finally, in Sec. 6 we
summarize the main results and draw additional conclusions.

2 The Model

As mentioned above, we are interested in a system of two particles of masses m1 and m2 confined to a one-
dimensional box with impenetrable walls located at x = −L/2 and x = L/2. If we assume a linear force between
the particles then the Hamiltonian operator reads

Ĥ = − h̄2

2

(
1

m1

∂2

∂x21
+
1

m2

∂2

∂x22

)
+

k

2
(x1 − x2)2 (1)

and the boundary conditions are ψ = 0 when xi = ±L/2. It is convenient to convert it to a dimensionless form
by means of the variable transformation qi = xi/L that leads to:

Ĥd =
m1L

2

h̄2
Ĥ = −1

2

(
∂2

∂q21
+ β

∂2

∂q22

)
+

λ

2
(q1 − q2)

2 (2)

where β = m1/m2, λ = km1L
4/h̄2 and the boundary conditions become ψ = 0 if qi = ±1/2. Without loss of

generality we assume that 0 < β ≤ 1.
The free problem (−∞ < xi < ∞) is separable in terms of relative and center-of-mass variables

x = x1 − x2

X =
1
M
(m1x1 +m2x2) , M = m1 +m2 (3)
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respectively, that lead to

Ĥ = − h̄2

2

(
1
M

∂2

∂X2
+
1
m

∂2

∂x2

)
+ V (x), m =

m1m2
M

. (4)

In this case we can factor the eigenfunctions as

ψKv(x1, x2) = eiKXφv(x)

−∞ < K < ∞, v = 0, 1, . . . (5)

where φv(x) are the well–known eigenfunctions of the harmonic oscillator, and the eigenvalues read

EKv =
h̄2K2

2M
+ h̄

√
k

m

(
v +
1
2

)
. (6)

However, because of the boundary conditions, any eigenfunction is of the form ψ(x1, x2) = (L
2/4 − x21)

(L2/4 − x22)Φ(x1, x2), where Φ(x1, x2) does not vanish at the walls. We clearly appreciate that the separa-
tion just outlined is not possible in the confined model.
When β < 1 the transformations that leave the Hamiltonian operator (including the boundary conditions)

invariant are: identity Ê : (q1, q2) → (q1, q2) and inversion ı̂ : (q1, q2) → (−q1, −q2). Therefore, the eigenfunc-
tions of Ĥd are the basis for the irreducible representations Ag and Au of the point group S2 [24] (also called
Ci by other authors).
On the other hand, when β = 1 (equal masses) the problem exhibits the highest possible symmetry. The

transformations that leave the Hamiltonian operator (including the boundary conditions) invariant are: identity
Ê : (q1, q2)→ (q1, q2), rotation by π C2 : (q1, q2)→ (q2, q1), inversion ı̂ : (q1, q2)→ (−q1, −q2), and reflection in
a plane perpendicular to the rotation axis σh : (q1, q2)→ (−q2, −q1). In this case, the states are basis functions
for the irreducible representations Ag, Au, Bg, and Bu of the point group C2h [24].

3 Small box

When λ � 1 we can apply perturbation theory choosing the unperturbed or reference Hamiltonian operator to
be Ĥ0d = Ĥd(λ = 0). Its eigenfunctions and eigenvalues are given by

ϕ(0)n1,n2(q1, q2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 cos[(2i − 1)πq1] cos[(2j − 1)πq2] Ag

2 sin(2iπq1) sin(2jπq2) Ag

2 cos[(2i − 1)πq1] sin(2jπq2) Au

2 sin(2iπq1) cos[(2j − 1)πq2] Au

, i, j = 1, 2, . . .

ε(0)n1,n2 =
π2

2

(
n21 + βn22

)
, n1, n2 = 1, 2, . . . (7)

There is no degeneracy when β < 1, except for the accidental one that takes place for particular values of β
which we will not discuss in this paper. The energies corrected to first order read

ε[1]n1,n2 =
π2

2

(
n21 + βn22

)
+ λ

π2n21n
2
2 − 3

(
n21 + n22

)
12π2n21n

2
2

. (8)

When β = 1 the zeroth–order states ϕ(0)n1,n2 and ϕ(0)n2,n1 (n1 
= n2) are degenerate, but it is not necessary to
resort to perturbation theory for degenerate states in order to obtain the first-order energies. We simply take
into account that the eigenfunctions of Ĥ0d adapted to the symmetry of the problem are
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ϕ(0)n1,n2(q1, q2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2− δij {cos[(2i − 1)πq1] cos[(2j − 1)πq2]

+ cos[(2j − 1)πq1] cos[(2i − 1)πq2]} Ag

√
2 {cos[(2i − 1)πq1] cos[(2j − 1)πq2]

− cos[(2j − 1)πq1] cos[(2i − 1)πq2]} Bg

√
2 {cos[(2i − 1)πq1] sin[2jπq2] + sin[2jπq1] cos[(2i − 1)πq2]} Au

√
2 {cos[(2i − 1)πq1] sin[2jπq2]− sin[2jπq1] cos[(2i − 1)πq2]} Bu

√
2− δij {sin[2iπq1] sin[2jπq2] + sin[2jπq1] sin[2iπq2]} Ag

√
2 {sin[2iπq1] sin[2jπq2]− sin[2jπq1] sin[2iπq2]} Bg

(9)

where i, j = 1, 2, . . . They give us the energies corrected to first order as ε[1]n (S) =
〈
ϕ
(0)
ij (S)

∣∣∣ Ĥd

∣∣∣ϕ(0)ij (S)
〉
where

S denotes the irreducible representation. Since some of these analytical expressions are rather cumbersome for
arbitrary quantum numbers, we simply show the first six energy levels for future reference:

ε
[1]
1 (Ag) = π2 +

λ(π2 − 6)
12π2

ε
[1]
1 (Au) =

5π2

2
+

λ(108π4 − 405π2 − 4 096)
1 296π4

ε
[1]
1 (Bu) =

5π2

2
+

λ(108π4 − 405π2 + 4 096)
1 296π4

ε
[1]
2 (Ag) = 4π

2 +
λ(2π2 − 3)
24π2

ε
[1]
3 (Ag) = ε

[1]
1 (Bg) = 5π2 +

λ(3π2 − 10)
36π2

. (10)

The degeneracy of the approximate energies denoted ε
[1]
3 (Ag) and ε

[1]
1 (Bg) is broken at higher perturbation

orders as shown by the numerical results in Sec. 5.

4 Large box

When L → ∞ the energy eigenvalues tend to those of the free system (6). More precisely, we expect that the
states with finite quantum numbers n1, n2 at L = 0 correlate with those with K = 0 when L → ∞:

lim
λ→∞

ε(β, λ)√
λ
=
√
1 + β

(
v +
1
2

)
, v = 0, 1, . . . (11)

Besides, we should take into account that the symmetry of a given state is conserved as L increases from 0 to
∞.
When β < 1 we expect that the states approach

ψKv(x, X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos(KX)φ2v(x) Ag

sin(KX)φ2v+1(x) Ag

sin(KX)φ2v(x) Au

cos(KX)φ2v+1(x) Au

(12)

as L → ∞.
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For the more symmetric case β = 1 the states should be

ψKv(x, X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos(KX)φ2v(x) Ag

sin(KX)φ2v(x) Au

cos(KX)φ2v+1(x) Bu

sin(KX)φ2v+1(x) Bg

. (13)

Obviously, perturbation expressions (8) or (10) are unsuitable for this analysis and we have to resort to other
approaches.
In order to obtain accurate eigenvalues and eigenfunctions for the present model we may resort to the

Rayleigh-Ritz variational method and the basis set of eigenfunctions of Ĥ0d given in equations (7) and (9).
Alternatively, we can also make use of the collocation method with the so-called little sinc functions (LSF)
that proved useful for the treatment of coupled anharmonic oscillators [25]. In this paper we choose the latter
approach.
Another way of obtaining approximate eigenvalues and eigenfunctions is provided by a straightforward

variational method proposed some time ago [26]. The trial functions suitable for the present model are of the
form

ϕ(q1, q2) =

(
1
4

− q21

)(
1
4

− q22

)
f(c, q1, q2)e−a(q1−q2)

2

(14)

where c = {c1, c2, . . . , cN} are linear variational parameters, which would give rise to the well known Rayleigh-
Ritz secular equations, and a is a nonlinear variational parameter. Even the simplest and crudest variational
functions provide reasonable results for all values of λ, as shown in Sec. 5.
The simplest trial function for the ground state of the model with β < 1 is

ϕ(q1, q2) =

(
1
4

− q21

)(
1
4

− q22

)
e−a(q1−q2)

2

. (15)

Note that this function is the basis for the irreducible representation Ag. We calculate w(a, λ) =
〈
ϕ
∣∣∣Ĥd

∣∣∣ϕ〉 /

〈ϕ|ϕ〉 and obtain λ(a) from the variational condition ∂w/∂a = 0 so that [w(a, λ(a)), λ(a)] is a suitable parametric
representation of the approximate energy. In this way we avoid the tedious numerical calculation of a for each
given value of λ and obtain an analytical parametric expression for the energy, which we do not show here
because it is rather cumbersome. We just mention that the parametric expression is valid for a > a0 where a0
is the greatest positive root of λ(a) = 0.
When β = 1 we choose the following trial functions for the lowest states of each symmetry type

ϕAg (q1, q2) =

(
1
4

− q21

)(
1
4

− q22

)
e−a(q1−q2)

2

ϕAu(q1, q2) =

(
1
4

− q21

)(
1
4

− q22

)
(q1 + q2)e−a(q1−q2)

2

ϕBu(q1, q2) =

(
1
4

− q21

)(
1
4

− q22

)
(q1 − q2)e−a(q1−q2)

2

ϕBg (q1, q2) =

(
1
4

− q21

)(
1
4

− q22

)(
q21 − q22

)
e−a(q1−q2)

2

. (16)

5 Results

Fig. 1 shows the ground-state energy for β = 1/2 calculated by means of perturbation theory, the LSF method
and the variational function (15) for small and moderate values of λ. Fig. 2 shows the results of the latter
two approaches for a wider range of values of λ. We appreciate the accuracy of the energy provided by the
simple variational function (15) for all values of λ. The reader will find all the necessary details about the
LSF collocation method elsewhere [25]. Here we just mention that a grid with N = 60 was sufficient for
the calculations carried out in this paper. Fig. 3 shows that ε(λ)/

√
λ calculated by the same two methods

for β = 1/2 approaches
√
3/8 as suggested by equation (11). Fig. 4 shows the first six eigenvalues ε(λ) for

β = 1/2 calculated by means of the LSF collocation method. The level order to the left of the crossings

20



Acta Polytechnica Vol. 50 No. 5/2010

0 50 100 150 200

λ

8

10

12

14

ε

Fig. 1: Perturbation theory (dotted line), LSF (points) and variational (solid line) calculation of the ground-state energy
ε(λ) for β = 1/2

0 500 1000 1500 2000

λ

10

15

20

25

30

ε

Fig. 2: Variational (line) and LSF (points) calculation of the ground-state ε(λ) for β = 1/2
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Fig. 3: Variational (line) and LSF (points) calculation of the ground-state ε(λ)/
√

λ for β = 1/2. The horizontal line
marks the limit
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Fig. 4: First six eigenvalues for β = 1/2 calculated by means of the LSF method
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Fig. 5: First six eigenvalues for β = 1. Circles, dotted line and solid line correspond to the LSF collocation approach,
perturbation theory and variation method, respectively. The level order is Ag < Au < Bu < 2Ag < 3Ag < Bg
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is ε1(Ag) < ε1(Au) < ε2(Au) < ε2(Ag) < ε3(Ag) < ε3(Au). Note the crossings between states of different
symmetry and the avoided crossing between the states 2Au and 3Au.
Fig. 5 shows the first six eigenvalues for β = 1 calculated by means of perturbation theory, the LSF method

and the variational functions (16) for small values of λ. The energy order is ε1(Ag) < ε1(Au) < ε1(Bu) <
ε2(Ag) < ε3(Ag) < ε1(Bg) and we appreciate the splitting of the energy levels ε3(Ag) and ε1(Bg) that does
not take place at the first order of perturbation theory, as discussed in Sec. 3. Finally, Fig. 6 shows ε(λ)/

√
λ

for sufficiently large values of λ. We appreciate that the four simple variational functions (16) are remarkably
accurate and that ε(λ)/

√
λ → 1/

√
2 for the first two states of symmetry Ag and Au and ε(λ)/

√
λ → 3/

√
2 for

the next two ones of symmetry Bu and Bg. These results are consistent with equation (13), which suggests that
the energies of the states with symmetry A and B approach

√
2(2v + 1/2) and

√
2(2v + 3/2), respectively. In

fact, Fig. 6 shows four particular examples with v = 0.

6 Conclusions

The model discussed in this paper is different from those considered before [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23], because in the present case the linear force is due to the interaction between
two particles. Although the interaction potential depends on the distance between the particles the problem
is not separable and should be treated as a two-dimensional eigenvalue equation. It is almost separable for a
sufficiently small box because the interaction potential is negligible in such a limit, and also for a sufficiently
large box where the boundary conditions have no effect. It is convenient to take into account the symmetry of
the problem and classify the states in terms of the irreducible representations because it facilitates the discussion
of the connection between both regimes.
The model may be suitable for investigating the effect of pressure on the vibrational spectrum of a diatomic

molecule, and in principle one can calculate the spectral lines by means of the Rayleigh-Ritz or the LSF
collocation method [25].
The simple variational functions developed some time ago [26] and adapted to present problem in Sec. 4

provide remarkably accurate energies for all box size values, and are, for that reason, most useful for showing
the connection between the two regimes and for verifying the accuracy of more elaborate numerical calculations.
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