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Bidifferential Calculus, Matrix SIT and Sine-Gordon Equations

A. Dimakis, N. Kanning, F. Miiller-Hoissen

Abstract

We express a matrix version of the self-induced transparency (SIT) equations in the bidifferential calculus framework.

An infinite family of exact solutions is then obtained by application of a general result that generates exact solutions from

solutions of a linear system of arbitrary matrix size. A side result is a solution formula for the sine-Gordon equation.
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1 Introduction

The bidifferential calculus approach (see [1] and the
references therein) aims to extract the essence of in-
tegrability aspects of integrable partial differential or
difference equations (PDDEs) and to express them,
and relations between them, in a universal way, i.e.
resolved from specific examples. A powerful, though
simple to prove, result [1, 2, 3] (see section 6) gener-
ates families of exact solutions from a matrix linear
system. In the following we briefly recall the basic
framework and then apply the latter result to a ma-
trix generalization of the SIT equations.

2 Bidifferential calculus

A graded algebra is an associative algebra Q over C
with a direct sum decomposition 2 = @QT into a
r>0

subalgebra A := Q° and A-bimodules ", such that
O"Q° C Q5. A bidifferential calculus (or bidif-
ferential graded algebra) is a unital graded algebra
Q equipped with two (C-linear) graded derivations
d,d : @ — Q of degree one (hence d2" C Qrtt
dQ" € Q"1), with the properties

2=0

z

Vz e C, where d,:=d-zd, (1)

and the graded Leibniz rule d,(xx') = (d.x) X' +
(—1)" xd.x/, for all xy € Q" and X’ € Q.

3 Dressing a bidifferential
calculus

Let (Q,d,d) be a bidifferential calculus. Replacing
d.in (1) by D, :=d — A — 2d with a 1-form A € Q'
(in the expression for D, to be regarded as a multi-
plication operator), the resulting condition Dz =0
(for all z € C) can be expressed as

dA=0=dA—-AA. (2)

If (2) is equivalent to a PDDE, we have a bidiffer-
ential calculus formulation for it. This requires that
A depends on independent variables and the deriva-
tions d,d involve differential or difference operators.
Several ways exist to reduce the two equations (2) to
a single one:

(1) We can solve the first of (2) by setting A = de¢.
This converts the second of (2) into

dd¢=de do. (3)

(2) The second of (2) can be solved by setting A =
(dg) g~!. The first equation then reads

d((dg)g) =0. (4)

(3) More generally, setting A = [dg — (dg)A] g~ %,
with some A € A, we have dA— A A = (dA) gAg~ '+
(dg) (dA — (dA)A)g™*. As a consequence, if A is
chosen such that dA = (dA) A, then the two equa-
tions (2) reduce to

d([dg - (dg)A] g7*) = 0. (5)

With the choice of a suitable bidifferential calcu-
lus, (3) and (4), or more generally (5), have been
shown to reproduce quite a number of integrable
PDDEs. This includes the self-dual Yang-Mills equa-
tion, in which case (3) and (4) correspond to well-
known potential forms [1]. Having found a bidiffer-
ential calculus in terms of which e.g. (3) is equivalent
to a certain PDDE, it is not in general guaranteed
that also (4) represents a decent PDDE. Then the
generalization (5) has a chance to work (cf. [1]). In
such a case, the Miura transformation

[dg — (dg)A] g~ ' =do (6)

is a hetero-Béacklund transformation relating solu-
tions of the two PDDEs.

Béacklund, Darboux and binary Darboux trans-
formations can be understood in this general frame-
work [1], and there is a construction of an infinite
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set of (generalized) conservation laws. Exchanging

d and d leads to what is known in the literature as
‘negative flows’ [3].

4 A matrix generalization of
SIT equations and its
Miura-dual

Let A = Mat (n, n, C*(R?)), the algebra of n x n ma-

trices of smooth functions on R?. Let Q = A®/\((C2)

with the exterior algebra /\((CQ) of C?. In terms of

1
coordinates z,y of R?, a basis (1, (s of /\((Cz), and a

constant n x n matrix J, maps d and d are defined
as follows on A,

af = S A1OG+ /96,
i = oGt les

(see also [4]). They extend in an obvious way (with
d¢; = d¢; = 0) to Q such that (©,d,d) becomes a
bidifferential calculus. We find that (3) is equivalent
to

b= |11 - 3] 7

Let n = 2m and J = block-diag(I, —I), where I = I,,,
denotes the m x m identity matrix. Decomposing ¢
into m x m blocks, and constraining it as follows,

¢:<p q>, (8)
q —p

(7) splits into the two equations

Doy = ()ys Gy =q—Dyqa—qpy- (9)

We refer to them as matriz-SIT equations (see sec-
tion 5), not purporting that they have a similar phys-
ical relevance as in the scalar case. The Miura trans-
formation (6) (with A = 0) now reads

geo = 31h0l, Slhde =6, (10)

Writing
[ a b
g - c d 9

with m X m matrices a, b, c,d, and assuming that a
and its Schur complement S(a) = d—ca~'b is invert-
ible (which implies that g is invertible), (10) with (8)
requires

b= —cald,
ay = —cga” e, (11)
dy = —cyatca ld.
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The last equation can be replaced by d,d™ ' =
az a”'. Invertibility of S(a) implies that d and I+ 12
are invertible, where 7 := ca~!. The conditions (11)
are necessary in order that the Miura transformation
relates solutions of (9) to solutions of its ‘dual’

_ 1 _
obtained from (4). Taking (11) into account, the
Miura transformation reads
q = —cgca_1 = —7r, —rama_l,
qy = —r (I+r3H71, (13)
by = I_(I+7‘2)71 .

As a consequence, we have
Qyz +py2 =Dy - (14)

Furthermore, the second of (11) and the first of (13)
imply aza~' = gr. Hence we obtain the system

Te =—q—T4qr, qy:_r(1_~_7,2)717 (15)

which may be regarded as a matrix or ‘noncommu-
tative’ generalization of the sine-Gordon equation.
There are various such generalizations in the lit-
erature. The first equation has the solution ¢ =

oo
- Z(—l)k k1, v if the sum exists. Alternatively,
k=0

we can express this as ¢ = — (I +75rr) " (rz), where
rr (rg) denotes the map of left (right) multiplication
by r. This can be used to eliminate ¢ from the second
equation, resulting in

((I+ rLrR)_l(rI))y =r(I+r*)""t. (16)

If r = tan(f/2) = with a constant projection 7 (i.e.

w2 = 7) and a function 6, then (16) reduces to the

sine-Gordon equation
Ory =sind . (17)

(15) can be obtained directly from (12) as follows,
by setting

()T )

1
gfl = afl ( " ) (I+T2)71 .
—r I

This leads to

hence

((r1r+rpr+p)(l+r2)_1)y =0,

((ra +7“P—P7‘)(I+7"2)_1)y =r(I+r%)7",
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where p = aga Setting an integration ‘con-
stant’ to zero, the first equation integrates to p =
—rer—rpr. With its help, the second can be written
as (ry +rp)y = r(I +7r*)"'. Since ¢ = —(ra), a ' =
—r, — 1 p, this is the second of (15). The first follows
noting that gr = p.

5 Sharp line SIT equations
and sine-Gordon

We consider the scalar case, ie. m = 1. In-
troducing £ = 2+v/ag with a positive constant a,
P = 2qy, N = 2p, — 1, and new coordinates z,t
via z = Va(z — t) and y = /az, the system (9) is
transformed into

Pt = SN, ./\[t == —57),
and the relation between £ and P takes the form
gz + gt =aP.

These are the sharp line self-induced transparency
(SIT) equations [5, 6, 7). We note that P? + N2 is
conserved. Indeed, as a consequence of (14), we have
P2+ N? = 1. Writing P = —sinf and N = — cos¥,
reduces the first two equations to £ = ;. Expressed
in the coordinates x,y, the third then becomes the
sine-Gordon equation (17) (cf. [6]). As a consequence
of the above relations, ¢ and p depend as follows on
Ga

1
- __ea:v
1= 73
1.
@ = —3 sinf, (18)

1
Dy = 5(1 —cosf) .

These are precisely the equations that result from the
Miura transformation (10) (or from (13)), choosing

.0
B CcOs 5 — sin 5
g - ) 9 )
Sin 5 CcOs 5

and (12) becomes the sine-Gordon equation (17).
The conditions (11) are identically satisfied as a con-
sequence of the form of g.

6 A universal method of
generating solutions from a
matrix linear system

Theorem 1 Let (Q,d,d) be a bidifferential calculus

with 1 = A® /\((Cz), where A is the algebra of ma-

trices with entries in some algebra B (where the prod-
uct of two matrices is defined to be zero if the sizes

of the two matrices do not match). For fited N, N’,
let X € Mat(N,N,B) and Y € Mat(N',N,B) be
solutions of the linear equations

dX = (dX)P,
dY = (dY) P,
RX-XP = -QY,

with d-constant and d-constant matrices P,R €
Mat (N,N,B), and Q = VU, where U €
Mat (n, N',B) and V € Mat (N, n, B) are d- and d-
constant. If X is invertible, the n X n matriz variable

¢=UY X 'V € Mat (n,n, B)

solves dp = (d¢) p+dY withy = UY X 'RV, hence
(by application of d) also (3). ]

There is a similar result for (5) [3]. The Miura
transformation is a corresponding bridge.

7 Solutions of the matrix SIT
equations

From Theorem 1 we can deduce the following result,
using straightforward calculations [8], analogous to
those in [2] (see also [3]).
Proposition 2 Let S € Mat (M, M,C) be invert-
ible, U € Mat (m,M,C), V € Mat (M, m,C), and
K € Mat (M, M,C) a solution of the Sylvester equa-
tion

SK+KS=VU. (19)

—1
Then, with E = eS8 4nd any po €
Mat (m,m,C) (more generally x-dependent),

¢g=UE Iy +(KE)*)"'V, (20)
p=po—UEKE (I, + (KE)*)"'V

(assuming the inverse exists) is a solution of (9). O

If the matrix S satisfies the spectrum condition
a(S)Nao(—=S)=0 (21)

(where o(.S) denotes the set of eigenvalues of S), then
the Sylvester equation (19) has a unique solution K
(for any choice of the matrices U, V), see e.g. [9].
By a lengthy calculation [8] one can verify directly
that the solutions in Proposition 2 satisfy (14). Al-
ternatively, one can show that these solutions actu-
ally determine solutions of the Miura transformation
(cf. [3]), and we have seen that (14) is a consequence.
There is a certain redundancy in the matrix data
that determine the solutions (20) of (9). This can be
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narrowed down by observing that the following trans-
formations leave (19) and (20) invariant (see also the
NLS case treated in [2]).

(1) Similarity transformation with an invertible M €
Mat (M, M, C):

S— MSM™*, K—MKM™!,
Vi~ MV, U—~UM™"'.
As a consequence, we can choose S in Jordan normal
form without restriction of generality.
(2) Reparametrization transformation with invertible
A, B € Mat (M, M,C):
S— S, K— B 'KA™!,
U—~UA"' =E— ABE.

V- B v,

(3) Reflexion symmetry:

S— S, K—-K'!' VK1V,
U—~UK™", pp—p— UK 'V.

This requires that K is invertible. More generally,

such a reflexion can be applied to any Jordan block

of S and then changes the sign of its eigenvalue [8]

(see also [10, 2]). The Jordan normal form can be

restored afterwards via a similarity transformation.
The following result is easily verified [8].

Proposition 3 Let S,U,V be as in Proposition 2
and T € Mat (M, M, C) invertible.

(1) Let T be Hermitian (i.e. T' = T) and such
that ' = TST™', U = VIT. Let K be a so-
lution of (19), which can then be chosen such that
K" = TKT™'. Then q and p given by (20) with
pg = po are both Hermitian and thus solve the Her-
mitian reduction of (9).

(2) Let T = T~ ' (where the bar means complex
conjugation) and S = TST™, U = UT™" and
V =TV. Let K be a solution of (19), which can
then be chosen such that K = TKT . Then q and
p given by (20) with Py = po satisfy ¢ = q and p = p,
and thus solve the complex conjugation reduction of

(9). O

8 Rank one solutions

Let M = 1. WewriteS:s,U:u,V:vT,

K = k (where " means the transpose) and 5 = ¢ =
—sx—s ! . T

e Y. Then (19) yields k = (v'u)/(2s). From
(20) we obtain

2sk& 5 2s
= — T 5 = —_— 7T ,
IR me? " P T T (Rep
_ uv’
Po = po — 28T, ™=
v'u
The Miura transformation (13) implies r = —¢q, (I —

py)*l, and we obtain
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2k
B

which is singular. But § = —2 arctan(2k¢/[1— (k€)?])
is the single kink solution of the sine-Gordon equa-
tion (17).

9 Solutions of the scalar
(sharp line) SIT equations

We rewrite p in (20), where now m = 1, as follows,

p=po—tr(SK+KS)EKE (Iy; +(KE)*)™")
=po+tr((In+ (KE)), (In+ (KE)*)™)
= po + (logdet (Iny + (KE)?))_, (22)

using (19) and the identity (det M), = tr(M,M ")
det M for an invertible matrix function M. ¢ in (20)
can be expressed as

g=2tr (SKE Iy +(KE)*)™) .

In particular, if S is diagonal with eigenvalues s;,
i=1,..., M, and satisfies (21), then the solution K
of the Sylvester equation (19), which now amounts
to rank (SK + KS) = 1, is the Cauchy-type ma-
trix with components K;; = v; u;/(s; + s;), where
ui,v; € C. Figs. 1 and 2 show plots of two examples
from the above family of solutions.

B

/4 lJIIlll'l ¥
/ ? \ /
/7 i

Fig. 1: A scalar 2-soliton solution with S = diag(1,2)
and u; =v; =1

Fig. 2: A scalar breather solution with S = diag (1 + i,
1—i)and u; =v; =1

10 A family of solutions of the
real sine-Gordon equation

Via the Miura transformation (18), Proposition 2 de-
termines a family of sine-Gordon solutions (see also
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e.g. [6, 11, 12, 13, 14, 15, 16] for related results ob-
tained by different methods).
Proposition 4 Let S € Mat (M, M,C) be invert-
ible and K € Mat (M, M,C) such that rank (SK +
KS) = 1, det(Iy + (KE)?) € R with & =
-1
eS8 YV, and tr (SKE (I + (KE)?)™) ¢ iR
(where i is the imaginary unit). Then
VB
0 = 4 arctan (7)
1+1-0
with
B := (log|det(In + (K E)?)]),, (23)
solves the sine-Gordon equation 0., = sinf in any
open set of R? where det(In + (KE')2) # 0.

Proof: Let p be given by (22). Due to the assumption
det(Iy + (K E)?) € R, p, is real, hence (14) implies
Il — 2p,|> = 1 —4q, It follows that ¢,* is real.
Since another of our assumptions excludes that g, is
imaginary, it follows that |1 — 2p,| < 1. Hence the
equation cosf = 1 — 2p,, (second of (18)) has a real
solution 6. Inserting expression (22) for p, we arrive
at cos = 1—2 (log det (I + (KE)z))m/. Moreover,
(14) shows that py > 0 and thus 0 < p?; < 1. Using
identities for the inverse trigonometric functions, we
find (23), where § = p,. O

Proposition 3 yields sufficient conditions on the
matrix data for which the last two assumptions in
Proposition 4 are satisfied.
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