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Some Formulas for Legendre Functions Induced by the

Poisson Transform
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Abstract

Using the Poisson transform, which maps any homogeneous and infinitely differentiable function on a cone into a

corresponding function on a hyperboloid, we derive some integral representations of the Legendre functions.
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1 Introduction

Let us assume that the linear space R" ™ is endowed
with the quadratic form

q(z) == a8 — a2 — ... — 22,
We denote the polar bilinear form for ¢ by ¢. The
Lorentz group SO(n,1) preserves this form and di-
vides R"™! into orbits. We will deal with two kinds
of these orbits. One of them is

C:=A{z | q(zr) =0}

it is a cone. The second kind of orbits consist of
two-sheet hyperboloids

H(r) = {z | q(z) =1*}

for any r > 0.

The group SO(n, 1) has 2 connected components.
One of them contains the identity and will be under
our consideration further. We denote this subgroup
by symbol G. The action z — ¢~ 'z of the group
G is transitive on C. Let 0 € C and D, be a lin-
ear subspace in C°°(C) consisting of o-homogeneous
functions. It is useful to suppose throughout this
paper that —n 4+ 1 < re 0 < 0. We define the repre-
sentation T, in D, by left shifts:

T,(9)lf (@) := f(g~"a).

Suppose that v is a contour on C' intersecting all
generatrices (i.e. all lines containing the origin). Ev-
ery point = € v depends on n—1 parameters, so every
point = € C' can be represented as

Xr; = {th(gl, .. ~a€n—1)7

Denoting by G the subgroup of G which acts transi-
tively on ~, we have

1=1,...,n+ 1.

dr = t"3dtdy, (1)

where dv is the G-invariant measure on y.
For any pair (D,, Dg ), we define the bilinear func-
tionals F, : (D,,Ds) — C,

(1 fo) — / (@) falz) dy.

The functional F, does not depend on v if & =
—o —n+ 1, because, first, we have formula (1), and,
second, f1 and fy are both homogeneous functions,
and, third, the G-invariant measure on C' can be rep-
resented in the form

_ dz¢qy - A

dz
|T¢(nt1)l

) (2)

where ( € S and § is the permutation group of the
n n+1

set {1,...,n+1}.
Let f € D, and y € H(1). We refer to the inte-
gral transform

() (y) = Fy (a7 (y.2), f)

as the Poisson transform [1].

2 Formulas related to sphere
and paraboloid

Let 1 be the intersection of the cone C' and the plane
x9 = 1. Each point « € ; depends on spherical pa-
rameters ¢1, ..., ¢,—1 by the formula

n—s
Ty = H sin ¢; + oS ¢n—s11, s#£0,
i=1
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if angle ¢,_s4+1 exists. Here ¢,—1 € [0;27) and
¢17~~~;¢n72 € [0;’/T).
The subgroup H; ~ SO(n) acts transitively on

~v1, and any permutate {( € S defines the Hi-
n+1

invariant measure

v - dvgm)

d’}/l =
|Z¢(nt)l

The invariant measure in spherical coordinates is
given by 9.1.1.(9) [2]

Let v2 be the intersection of cone C' and the hy-
perplane xg+x, = 1. We describe every point = € s
by the coordinates 7, ¢1, ..., ¢,—_2 according to the

formulas
1472 1—r?
Tog = 5 y T = 2 )
n—s—1
Ty =T H sin ¢; cos ¢y, _s, S ¢ {O’n}
i=1

(if angle ¢,,_ exists), where r > 0,¢,_2 € [0;27)
and ¢1,...,¢n_3 € [0;7).

We denote as Hs the subgroup of G acting tran-
sitively on 2. Hs consists of the matrices

diag (1,...,1) bt T
N——
n—1
b b* b*

1
where b = (b1,...,b,_1) and b* = §(b%+...+bfhl).

It is not too hard to derive the Hs-invariant mea-
sure

n—2
dy =r""2dr H sin" "2 ¢; dep;
i=1
on 7.

Let)\>0,u€R,k02k12 > kn_o >0,
ll2...zln,220,m12...2mn,220,K:
(ko, k1, kg, 2k 2), L = (1, ..., ln_3, £ln_2),
M = (ml, .. .,mn_g,ﬂ:mn_g).

We will now deal with two bases in D,. One of
them consists of the functions

7 (2) = 25~ B (2),

where K = (ko,ki,...,kn_3, %k, o) € Z"", ki >
ki+1 2 0 and
n—3
— t;—t;
() = [[ i
i=1
n7i71 Lo 7 .
CLlis ( - ?) (o & f1) 2.
rnfz

The second basis consists of the functions

n—3

FE (@) = (w0 +2n)7" 7

A" Ao\ T
2 2

>\71n71 —_n—

Jz1+"T‘3 (330 +33n> 21 (@),
where rjz = ZL’l +x L=(1,...,lh—3,%l,_2) €
Z"2 X >0 and l > l2+1 > 0. Suppose, in addition,
that the functions of the above bases are equipped
with the normalizing factors defined by formulas [2,
9.4.1.7, 10.3.4.9].

Let us consider the distribution

+oo
Z / C(II(I%LA (L A) dA. (3)

From the orthogonality of the functions =7, we ob-
tain the property

Fo(f 2070 = 0k

From this property, it immediately follows that
12 1 —o—n—1,2
C?((LA —F.y(ff(,f(L)\)n )

Let v = 1. Then from the formula

/1 (1—22)"" % C% () C¥(2) da = 0,

-1

1
where m # n, re v > —5 e derive
n—2
Lemma 1. If Z(kl —1)

i=1
Let us assume another situation.

n—2
Lemma 2. If Z(kl —1;)?

i=1

240, then c}’é%LA) =0.

=0, then

22, ay = 27T gk (4 2k — 2)7

\/WAle<n;1> r(”;1+k1>-

n 1 (n—1 1
F<§+k1—1)1“ ( - )r (n+ 2k —2) -
ko—k1
I 2(n+ko+ ki —2) Z (=)™ (mh)~t-
m=0

n —

1
F(n+k0+k1+m—2)f‘1< +k1+m>-

I ko -k —m—1)T" Y04k +m)-

22| —m
G| 7
4| =04k
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PROOF. Suppose v = 5. Then we obtain the inte-
gral

+oo
/ r%—i—ll (7‘2 + 1)0—k1 .
0

o1 1-— 7‘2
Ck20—k11 <—1 —|—r2> Jn;s_Hl()\r) dr,

which can be solved explicitly after replacing

Ar\2 | 0
" Ty () = 28 AR GRS <<7> 5o )

according to formulas [3, 8.932.1, 8.932.2] and [4,
20.5.4].0

Theorem 1.

9

P:U%j%l(cosh a) =22""2 T 3n—1-

sinh® ! g eletn—Hap (% - 1) r (n i 1) :

2

+oo
r*l(—a)r*%(n—l)/ AT
0
A2 0
G21 -~ o
BT s
2
Ae )2 | 0
Gl ( 4) n—1 _n-3 |dn
o—— 0. ——°
2 772
PROOF. Suppose that the condition k3 =

li,...,kn—2 = l,—2 holds. From the distribution (3),
we obtain

“+o0
II( Ul) :/0 C(IT(I,%L,A) H(f(ULz,A))d)‘-

Further we assume ITI(f&') = Fy (G 7"y, x), fE)

and H(f("ik)) =F, (cj_"_"'*'l(y,x),f(”f,)\)), then for
the case y = (cosha,0,...,0,sinh) and put K =
0,...,0).0

Consider the case SO(2, 1) of the group SO(n, 1).
In this case, K = k and (L,A\) = A. The following

theorem is related to this case.

Theorem 2. If -1 <re 0 <0 and a # 0, then

e~ % sin(—mo) sinh'*? a -

l 1
cosha +1\274 3
- I'e—-1+1D)I'(1-=)-
(cosha—l) (0 —1+1) ( 2)

rt (l + %) /OOC p 7 Koy1(pe®) - (4)

D (=)' 2 (s+ DT (s —0) -

s=0

72

2| —s
G2l P d
13(4 —o—1,0 P

PROOF. After repeating the proof of the previous
theorem, we derive the following representation of
the Gauss hypergeometric function:

1 31 1 —cosha
2F1 (-0——,0+ §;§+l;#>

(-1)"t2=o—2 772 e sinha sin(—mo) -
coshar + 1\ 271 3
cosna T 2 Te+1-)T(1-2).

(cosha—l) (o0 + 2 (l 2)

/ AT K (™) S (=) T2 (s + 1)
0

- A
—0—1,0,0

Now we use the formula [5, 7.3.1.88] for [ = 0.¢

I'(s—o0)G% (A—2

3 Formulas related to
paraboloid and hyperboloid

Let v34+ be the intersection of cone C' and the plane
T, = 1. We denote as 73— the intersection of C' and
the plane z,, = —1. Let 73 := 34+ U~s_. The con-
tour 73 is a homogeneous space with respect to the
subgroup Hs ~ SO(n—1,1). If = belongs to vs, then

T, = =*1, xo = cosht,
n—s—1
zs = sinht H sin ¢; - cos ¢y, _s, s¢{0,n}
i=1

(if angle ¢, exists), where t € R, ¢,,—2 € [0;2m)
and ¢17 teey ¢n73 € [0777)
Any permutation ¢ € S determines the Hgs-

invariant measure

dxc(l) S dx((nfl)

d’}/4 =
|Z¢(m) ]
on 73, SO
n—2
dvys = cosh” 2 ¢ dt H sin" 72 ¢, do;.
i=1

Let us now consider the basis consisting of the
functions

f(‘jz\%[,u,i)(f) = (zn)+ T2y
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n=3
where (:En)i+ 2 is the generalized function defined

as
(2) T _{ |7
n)t - ip

0, if sign x # +1,

if sign x,, = £1,

M = (ml, ey

0 and ¢ € R.
By analogy with the previous case, we can obtain

the coefficients c (rs,,,4)- Let us suppose that n = 3

—2
Mp—3, £Mp_2) € Z"7%, m; > miqy1 >

and K = (I, s), M = m. From the distribution
oo |l
7“4. chlsmu+fle()
=0 s=—]l|
we have

Squ chs,fsp«‘Ffls()

and, therefore,

o |
f¢73’M+ Z Z Cls—sy-‘rH ) (5)
=0 s=—]l|

We choose 73 (in fact, 34 ) on the left side of equality
(5) and ;1 on the opposite side. In accordance with
our choice, we use two parametrizations of a point
y € H(1):

and y(t) = (cosht,0,...,0,sinht) respectively, so
v =e"'. After integration we have

sin[r(o 4 1)] cosh 't T’ (iu —0— 1) .

3 N\
r (—5 —0— 1,u> P T-lu (tanht) =

V2t 37(=1) (1)t Ay sinh? ¢ -
=0
[+ 1)T o —1+1) P, 2 ' (coshi),
2

where A; is the normalizing factor of the function
ol
l,s (J?)
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