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Dynamical Symmetry Breaking In RN Quantum Gravity
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Abstract

We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the
Schwinger-Dyson equation (in flat background space-time). A general formula for the second variation of the gravitational
action is obtained from the quantum corrections hμν (in arbitrary background metrics).
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The study of dynamical mass generation and
dynamical symmetry breaking in different external
fields [1, 2], including the gravitational field [3–5] is
an important step in studying fundamental interac-
tions, which can either be considered in field the-
ory and an attempt at quantization can be made
or considered as an external interaction. This pa-
per is devoted to the possibility of dynamical sym-
metry breaking in such gravitation models using the
Schwinger-Dyson equation formalism [6–9]. The pri-
mary goal is a study of some gravity properties of
f(R)-gravity [10], where R is a scalar curvature. One
of the most discussed variants of such models is RN

gravity [11, 12]. In particular, we are interested in a
possible effect of dynamical chiral symmetry break-
ing in this model under graviton and fermion inter-
action, which leads to mass formation of fermions.
This problem is important for several reasons. First,
quantum corrections should be taken into considera-
tion from different scenarios describing the evolution
of the early universe. Second, an understanding of
the dynamical symmetry breaking mechanism is im-
portant for black hole physics. Third, RN — gravity,
as a modified theory of General Relatity, is also in-
teresting from the phenomenological point of view,
the peculiarity of which appears in various cosmo-
logical models. In particular, it is necessary to in-
troduce either dark energy or a quintessence with a
much more exotic state equation to explain the ac-
celerated expansion of the observed universe (being
within the limits of relativity theory). To sum up,
it is significant for a description of the future of the
universe. However, if one modifies gravity in a proper
way, it is also possible to receive interesting cosmo-
logical dynamics without introducing new concepts.
Here, we provide a comparative analysis of the above
formalism both in the case of flat background met-
rics (Minkowski space) and in the case of an arbitrary
background.

Let us expand the four-dimensional space-time
metric as follows

g̃μν � gμν + hμν , (1)

where g̃μν is perturbed metric, gμν is background
metric, hμν are quantum corrections. This defini-
tion leads to the following results. In the case of
flat background space-time in the RN gravity model
there is an existence of corrections like O(hN ) or-
der and higher that gives no possibility to get the
necessary equations. We can speak about the ab-
sence of a symmetry breaking effect (at least in the
Schwinger-Dyson equation formalism). However, if
the background metric is curved, then corrections of
order appear and, particularly, specifically quadric
ones O(h2). They allow us to obtain the Schwinger-
Dyson equations and to test them for possible dy-
namical symmetry breaking. An important conclu-
sion is the following: if our real Universe is described
by a curved metric, then while constructing quan-
tum gravity theory, we should take into consider-
ation the summands of all powers in R, as they
provide the same degree in small quantum correc-
tions h.

1 Schwinger-Dyson equations

One possible method for a dynamical symmetry
breaking study is the Schwinger-Dyson equation for-
malism. Since it is impossible to write closed system
equations for all elements of the Feynman diagram,
we have to use some approximations, which allow us
to solve the Schwinger-Dyson equation and to find
the type of exact propagator. Exact propagators and
the vertex part are connected by the integral relation,

S−1 − S−1
0 = i

δΓ2
δS

(2)
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where S, S0 – exact and free fermion propagators,
δΓ2
δS

– describes two particle and irreducible interac-

tion diagrams, and Γ2 is a part of the effective action

Γ[S] = −iSp
(
Log S−1 + S−1

0 S
)

+ Γ2[S]. (3)

Here we confine ourselves to the exact fermion
propagator, which is written down in original type

S(p) =
1

A(p2)pμγμ − B(p2)
, (4)

where A(p2), B(p2) are some unknown functions of
the fourth momentum p, γμ are Dirac matrices. Then
the Schwinger-Dyson equation for this propagator
can be put down like [13–15]

(A − 1)pμγμ − B =
∫

d4q
(2π)4i

Γαβ(p, q − p)S′(q) ·

Γ′
μν(q, p − q)G′αβμν(p − q), (5)

where Γ′, G′ are an exact vertex function and an ex-
act graviton propagator.

The infinite set of SDEs determining the exact
fermion and boson Green functions, as well as the full
interaction vertex, can be solved within some trunca-
tion version only. This means that the only subset of
Feynman graphs is taken into account, which natu-
rally leads to the disappearance of the magical cancel-
lation of gauge-dependent terms in the S-matrix ex-
pansion. For this reason, the most widespread ladder
approximation gives gauge-dependent results, when
the fermion Green function is treated to be exact
only in the case when the boson propagator and the
interaction vertex are taken to be free [14]. In this
way, we can define the functions A(p2), B(p2) for the
quantum RN -gravity.

The following important remark should also be
made. We have to decide what kind of gravity action
and gauge-fixing term should be used. It is conve-
nient to bring the following condition

Sgf =
−β1
2M2

∫
d4x

√
−g
(
∇λhλ

μ − β2∇μh
)
·

(gμν∇ρ∇ρ + β3∇μ∇ν) × (6)

(∇σhσ
ν − β2∇νh) ,

where β1, β2, β3 are arbitrary parameters. Then,
putting down the second variation of the full action
which we can describe as the sum of the gravitational
field action and the gauge-fixing action in the form

δ2 (Sg + Sgf ) =
1

2M2

∫
d4xhμνHμνρσhρσ. (7)

Then the gravitational field propagator is defined as
an operator inverse to Hμνρσ , that is

Gμνρσ = M2
(
H−1)μνρσ

. (8)

Let us include the gravitational field in our con-
sideration.

2 Flat background metric

Here we single out the part of the quadratic action
according to corrections h, in order to put down the
Schwinger-Dyson equations. Instead of (1) the per-
turbed metric will be written down as

gμν � ημν + hμν , (9)

where ημν is the Minkowski metric (we choose the
signature (+ −−−)).

We consider the following action

Sg =
1

2M2

∫
d4x

√
−gRN . (10)

Note that action (10) does not have to be a full
action for the gravitational field, while the Einstein
linear gravitation on the curvature and Λ — term,
and other possible variants, can be also included.
However, a discussion of the effects caused by the
form (10) is the main goal of this paper.

In the case of a flat background metric, we have
the following expansion (with accuracy up to the sec-
ond order approximation)

√
−g � 1 +

1
2
h − 1

4
hμνhμν +

1
8
h2, (11)

where raising and lowering the index is by ημν back-
ground metric and h = ημνhμν .

The Riemann tensor is now

Rμ
νρσ = ∂ρΓμ

νσ − ∂σΓμ
νρ + Γμ

τρΓτ
νσ − Γμ

τσΓτ
νρ, (12)

while the Ricci tensor is determined by the Riemann
tensor convolution according to the first and the third
indices.

Then, for the scalar curvature we get

R = gμνRμν � 1
2

(
ημν − hμν + hμρhν

ρ

)
× (13)(

∂α∂μhα
ν − ∂α∂αhμν − ∂μ∂νh + ∂α∂νhα

μ +

O(h2)
)

= ∂α∂νhα
ν − ∂α∂αh + O(h2).

This implies, in the case of RN gravitation, the
development according to h has the form

RN �
(
∂α∂νhα

ν − ∂α∂αh + O(h2)
)N ∼ O(hN ) (14)

That is, the smallest order has a power N in
quantum corrections. Physically this means that the
graviton propagator is missed in such a gravitation
model, and only N -particle vertex functions exist.
Therefore, it is not essential for the study of dynam-
ical symmetry breaking (DSB) in this formalism. In
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other words, we can say that there is no dynamical
symmetry breaking effect in this approximation.

Now we proceed to the quite different situation of
non-flat background space-time.

3 Curved background metric

Let us choose the action for the gravitational field in
the form of

Sg =
1

2M2

∫
d4x
√
−g̃R̃N , (15)

where tilde denotes a perturbed metric, and is deter-
mined by (1).

Since the background metric is not the Minkowski
one, the summands of all h orders appear in all rede-
fined constructions. So the expressions for Christoffel
symbols can be reduced to the form (with accuracy
within the second order on quantum corrections)

Γ̃μ
νρ � Γμ

νρ +
1
2

(gμγ − hμγ) · (16)

(∇ρhγν + ∇νhγρ −∇γhνρ) ,

where Γμ
νρ are the Christoffel symbols calculated ac-

cording to the unperturbed metric gμν , and ∇ρ is the
covariant derivative relative to the same metric.

The complete expression for the Riemann tensor
(in this approximation) is

R̃μ
νρσ � Rμ

νρσ +
1
2

(gμτ − hμτ ) ×(
hτεR

ε
νσρ + hενRε

τσρ + ∇ρ∇νhτσ −
∇ρ∇τhνσ −∇σ∇νhτρ + ∇σ∇τhνρ) +
1
4
gμγgτε[(∇σhεν + ∇νhσε −∇εhνσ) ·

(∇τhγρ −∇ρhγτ −∇γhτρ) +

(∇σhτγ −∇τhσγ + ∇γhτσ) ·
(∇ρhνε + ∇νhρε −∇εhνρ)].

Here, the procedure for raising and lowering the
indices is provided by the background metric.

Hence, we find the scalar curvature

R̃ = g̃νσR̃ρ
νρσ � (gνσ − hνσ + hναhσ

α) R̃ρ
νρσ. (17)

Introduce the following symbols

h1 ≡ −Rνσhνσ + ∇ν∇σhνσ −∇ν∇νh, (18)

h2 ≡ Rνσhναhσ
α − hρτ (∇ρ∇σ + ∇σ∇ρ) hτσ −

hρτ∇ρ∇τh + hρτ∇σ∇σhρτ +
1
2
∇σhτσ∇τh −∇σhτσ∇γhγτ − (19)

1
4
∇τh∇τh +

1
2
∇τh∇γhγτ +

3
4
∇σhερ∇σhρε −

1
2
∇εhρ

σ∇σhρε.

The expression for scalar curvature is

R̃ � R + h1 + h2, (20)

where h1 contains the first power of the quantum cor-
rections only, and h2 contains the second powers.

Then, the N -th power of the scalar curvature be-
comes

R̃N � RN + NRN−1 (h1 + h2) + (21)
1
2
N(N − 1)RN−2h21.

In the case of arbitrary background space-time we
should take into account the expansion

det(g̃) � det(g) + hμνKμν(g) + (22)

hμνhαβFμναβ(g),

where

Kμν(g) = εαβρσ
(
δμ
0 δ

ν
αg1βg2ρg3σ + δμ

1 δ
ν
βg0αg2ρg3σ +

δμ
2 δ

ν
ρg0αg1βg3σ + δμ

3 δ
ν
σg0αg1βg2ρ

)
.

We underline the fact that if the background met-
ric is the Minkowski one ημν , then function Kμν =
−ημν and with accuracy within the first order we get
the well-known formula −g̃ � 1 + h. The expression
for Fμναβ(g) is cumbersome, and we do not present
it here.

To consider the possibility of dynamical symme-
try breaking, it is necessary to have an expression for
the second variation of the gravitational action. Let
us take into consideration the following expansion

√
a + x1 + x2 �

√
a +

x1 + x2
2
√

a
− x21

8
√

a3
, (23)

where x1 + x2 � a, and also (x1)
2 ∼ x2.

Then,√
−g̃ �

√
−g − hμνKμν − hμνhαβFμναβ �

√
−g − hμνKμν + hμνhαβFμναβ

2
√−g

− (24)

(hμνKμν)2

8
√
−g3

.

Thus, we obtain the final form of the second vari-
ation

δ(2)Sg =
1

2M2

∫
d4x

(
√
−g ·(

NRN−1h2 +
1
2
N(N − 1)RN−2h21

)
−

N

2
√−g

hμνKμνRN−1h1 − (25)

hμνhαβFμναβ

2
√−g

RN − (hμνKμν)2

8
√
−g3

RN

)
.
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Note, that in the case of the quadric gravitation
(N = 2) and a flat background (R = 0), instead of
(25) we obtain

δ(2)Sg =
1

2M2

∫
d4x

√
−gh21, (26)

which coincides with [13].
So, it has been shown that in the case of any arbi-

trary background metric for any N there is an equa-
tion (25). Hence, we obtain the propagator (8) and
the Schwinger-Dyson equations (5). This indicates
that the effect of dynamical symmetry breaking is
possible in RN -gravity.

4 Conclusions
Some quantum properties of model RN -gravity have
been considered in the paper. A comparative analysis
for two cases: a) a flat background space-time, and
b) an arbitrary curved background has been carried
out.

Expanding this model of gravity with quantum
corrections hμν , we found that in the first case the
smallest order of quantum corrections is N . This
means that in the quantum theory of the RN -gravity
graviton propagator (for N > 2) does not exist, and
there is a vertex function of graviton-graviton inter-
action that is not used in this formalism. Thus, there
is no Schwinger-Dyson equation (5) and, therefore,
there is no effect to discuss.

In case b, a general formula (25) for the second
variation of gravitational action on the quantum cor-
rections hμν is obtained, which in the limit R → 0
coincides with the previously known results. It is
determined that in this formulation of the problem
under the effects of dynamical symmetry breaking
research the terms of all powers from the scalar cur-
vature should be considered in action for the grav-
itational field, because they give exactly the same
order in quantum fluctuations as the Einstein action
(N = 1).

Therefore, if we represent a full gravitational ac-
tion in the form of L = α1R

1 + α2R
2 + α3R

3 + . . .,
where αi are some factors of a necessary dimension,
then in the case of quantum gravity, each term will
contribute to the propagator of a graviton (∼ h2).
And we cannot neglect any term. In fact, this means
that there exist Schwinger-Dyson equations for any
N , and, hence, the effect of dynamical symmetry
breaking is possible.

We would like to note the analogy with the Fierz-
Pauli model, in which all undesirable degrees of free-
dom in the flat metric background are cancelled,
whereas in a curved background one undesirable de-
gree of freedom (the Boulware-Deser mode) appears
again in the spectrum [16].
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