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Ito-Sadahiro numbers vs. Parry numbers

Z. Masáková, E. Pelantová

Abstract

We consider a positional numeration system with a negative base, as introduced by Ito and Sadahiro. In particular,
we focus on the algebraic properties of negative bases −β for which the corresponding dynamical system is sofic, which

happens, according to Ito and Sadahiro, if and only if the (−β)-expansion of − β

β + 1
is eventually periodic. We call

such numbers β Ito-Sadahiro numbers, and we compare their properties with those of Parry numbers, which occur in
the same context for the Rényi positive base numeration system.
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1 Introduction
The expansion of a real number in the positional
number system with base β > 1, as defined by
Rényi [12] is closely related to the transformation
T : [0, 1) �→ [0, 1), given by the prescription T (x) :=
βx − #βx$. Every x ∈ [0, 1) is a sum of the infinite
series

x =
∞∑

i=1

xi

βi
, where xi = #βT i−1(x)$ (1)

for i = 1, 2, 3, . . .

Directly from the definition of the transformation T
we can derive that the ‘digits’ xi take values in the set
{0, 1, 2, . . . , %β& − 1} for i = 1, 2, 3, . . .. The expres-
sion of x in the form (1) is called the β-expansion of
x. The number x is thus represented by the infinite

word dβ(x) = x1x2x3 . . . ∈ AN over the alphabet
A = {0, 1, 2, . . . , %β& − 1}.

From the definition of the transformation T we
can derive another important property, namely that
the ordering on real numbers is carried over to the
ordering of β-expansions. In particular, we have for
x, y ∈ [0, 1) that

x ≤ y ⇐⇒ dβ(x) ) dβ(y) ,

where ) is the lexicographical order on AN, (order-
ing on the alphabet A is usual, 0 < 1 < 2 < . . . <
%β& − 1).

In [11], Parry has provided a criterion which de-

cides whether an infinite word in AN is or not a β-
expansion of some real number x. The criterion is
formulated using the so-called infinite expansion of
1, denoted by d∗β(1), defined as a limit in the space

AN equipped with the product topology, by

d∗β(1) := lim
ε→0+

dβ(1 − ε) .

According to Parry, the string x1x2x3 . . . ∈ AN rep-
resents the β-expansion of a number x ∈ [0, 1) if and
only if

xixi+1xi+2 . . . ≺ d∗β(1) (2)

for every i = 1, 2, 3, . . .

Condition (2) ensures that the set Dβ = {dβ(x) |
x ∈ [0, 1)} is shift invariant, and so the closure of Dβ

in AN, denoted by Sβ, is a subshift of the full shift

AN.
The notion of β-expansion can naturally be ex-

tended to all non-negative real numbers: The expres-
sion of a positive real number y in the form

y = ykβk + yk−1β
k−1 + yk−2β

k−2 + . . . , (3)

where k ∈ Z and ykyk−1yk−2 . . . ∈ Dβ ,

is called the β-expansion of y.
Real numbers y having in the β-expansion of |y|

vanishing digits yi for all i < 0 are usually called β-
integers, and the set of β-integers is denoted by Zβ .
The notion of β-integers was first considered in [3] as
an aperiodic structure modeling non-crystallographic
materials with long range order, called quasicrystals.
Numbers y with finitely many non-zero digits in the
β-expansion of |y| form the set denoted by Fin(β).

The choice of the base β > 1 strongly influences
the properties of β-expansions. It turns out that an
important role among bases is played by such num-
bers β for which d∗β(1) is eventually periodic. Parry
himself called these bases beta-numbers; now these
numbers are commonly called Parry numbers. We
can demonstrate the exceptional properties of Parry
numbers on two facts:
• The subshift Sβ is sofic if and only if β is a Parry

number [6].
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• Distances between consecutive β-integers take
finitely many values if and only if β is a Parry
number [15].

Recently, Ito and Sadahiro [5] suggested a study
of positional numeration systems with a negative
base −β, where β > 1. The representation of real
numbers in such a system is defined using the trans-

formation T : [lβ, rβ) �→ [lβ , rβ), where lβ = − β

β + 1
,

rβ = 1 + lβ =
1

1 + β
,

T (x) := −βx − #−βx − lβ$ . (4)

Every real x ∈ Iβ := [lβ, rβ) can be written as

x =
∞∑

i=1

xi

(−β)i
, (5)

where xi = #−βT i−1(x) − lβ$ for i = 1, 2, 3, . . .
The above expression is called the (−β)-

expansion of x. It can also be written as the infi-
nite word d−β(x) = x1x2x3 . . . We can easily show
from (4) that the digits xi, i ≥ 1, take values in the
set A = {0, 1, 2, . . . , #β$}. In this case, the order-
ing on the set of infinite words over the alphabet A
which would correspond to the ordering of real num-
bers is the so-called alternate ordering: We say that
x1x2x3 . . . ≺alt y1y2y3 . . . if for the minimal index j
such that xj �= yj it holds that xj(−1)j < yj(−1)j .
In this notation, we can write for arbitrary x, y ∈ Iβ

that

x ≤ y ⇐⇒ d−β(x) )alt d−β(y) .

In their paper, Ito and Sadahiro have provided a

criterion to decide whether an infinite word AN be-
longs to the set of (−β)-expansions, i.e. to the set
D−β = {d−β(x) | x ∈ Iβ}. This time, the criterion is
given in terms of two infinite words, namely

d−β(lβ) and d∗−β(rβ) := lim
ε→0+

d−β(rβ − ε) .

These two infinite words have a close relation: If
d−β(lβ) is purely periodic with odd period length, i.e.
d−β(lβ) = (d1d2 . . . d2k+1)ω, then we have d∗−β(rβ) =(
0d1d2 . . . (d2k+1 − 1)

)ω
. (As usual, the notation wω

stands for infinite repetition of the string w.) In all
other cases we have d∗−β(rβ) = 0d−β(lβ).

Ito and Sadahiro have shown that an infinite
word x1x2x3 . . . represents a (−β)-expansion of some
x ∈ [lβ , rβ) if and only if for every i ≥ 1 it holds that

d−β(lβ) )alt xixi+1xi+2 . . . ≺alt d∗−β(rβ) . (6)

The above condition ensures that the set D−β of in-
finite words representing (−β)-expansions is shift in-
variant. In [5] it is shown that the closure of D−β

defines a sofic system if and only if d−β(lβ) is even-
tually periodic.

By analogy with the definition of Parry numbers,
we suggest that numbers β > 1 such that d−β(lβ) is
eventually periodic be called Ito-Sadahiro numbers.
The relation of the set of Ito-Sadahiro numbers and
the set of Parry numbers is not obvious. Bassino [2]
has shown that quadratic numbers, as well as cubic
numbers which are not totally real, are Parry if and
only if they are Pisot. For the same class of num-
bers, we prove in [10] that β is Ito-Sadahiro if and
only if it is Pisot. This means that notions of Parry
numbers and Ito-Sadahiro numbers on the mentioned
type of irrationals do not differ. This would support
the hypothesis stated in the first version of this pa-
per, namely that the set of Parry numbers and the
set of Ito-Sadahiro numbers coincide. However, dur-
ing the refereeing process Liao and Steiner [9] found
an example of a Parry number which is not an Ito-
Sadahiro number, and vice-versa.

The main results of this paper are formulated as
Theorems 4 and 7. Theorem 4 gives a bound on the
modulus of conjugates of Ito-Sadahiro numbers; The-
orem 7 shows that periodicity of (−β)-expansion of
all numbers in the field Q(β) requires β to be a Pisot
or Salem number. Statements which we prove, as well
as results of other authors that we recall, demonstrate
similarities between the behaviour of β-expansions
and (−β)-expansions. We mention also phenomena
in which the two essentially differ.

2 Preliminaries
Let us first recall some number theoretical notions. A
complex number β is called an algebraic number, if it
is a root of a monic polynomial xn +an−1x

n−1+ . . .+
a1x + a0, with rational coefficients a0, . . . , an−1 ∈ Q.
A monic polynomial with rational coefficients and
root β of the minimal degree among all polynomials
with the same properties is called the minimal poly-
nomial of β, and its degree is called the degree of β.
The roots of the minimal polynomial are algebraic
conjugates.

If the minimal polynomial of β has integer coeffi-
cients, β is called an algebraic integer. An algebraic
integer β > 1 is called a Perron number, if all its con-
jugates are in modulus strictly smaller than β. An
algebraic integer β > 1 is called a Pisot number, if all
its conjugates are in modulus strictly smaller than 1.
An algebraic integer β > 1 is called a Salem number,
if all its conjugates are in modulus smaller than or
equal to 1 and β is not a Pisot number.

If β is an algebraic number of degree n, then the
minimal subfield of the field of complex numbers con-
taining β is denoted by Q(β) and is of the form

Q(β) = {c0 + c1β + . . . + cn−1β
n−1 | ci ∈ Q} .
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If γ is a conjugate of an algebraic number β, then
the fields Q(β) and Q(γ) are isomorphic. The corre-
sponding isomorphism is given by

c0+c1β+. . .+cn−1β
n−1 �→ c0+c1γ+. . .+cn−1γ

n−1 .

In particular, this means that β is a root of some
polynomial f with rational coefficients if and only if
γ is a root of the same polynomial f .

3 Ito-Sadahiro polynomial

From now on, we shall consider for bases of the
numeration system only Ito-Sadahiro numbers, i.e.
numbers β such that

d−β(lβ) = d1 . . . dm(dm+1 . . . dm+p)ω . (7)

Without loss of generality we shall assume that m ≥
0, p ≥ 1 are minimal values so that d−β(lβ) can be

written in the above form. Recall that lβ = − β

β + 1
.

Therefore (7) can be rewritten as

− β

β + 1
=

d1
−β

+ . . . +
dm

(−β)m
+(

dm+1

(−β)m+1
+ . . . +

dm+p

(−β)m+p

) ∞∑
i=0

1
(−β)p i

,

and after arrangement

0 =
−β

−β − 1
+

d1
−β

+ . . . +
dm

(−β)m
+

(−β)p

(−β)p − 1
·(

dm+1

(−β)m+1
+ . . . +

dm+p

(−β)m+p

)
.

Multiplying by (−β)m
(
(−β)p −1

)
, we obtain the fol-

lowing lemma.
Lemma 1 Let β be an Ito-Sadahiro number and let
d−β(lβ) be of the form (7). Then β is a root of the
polynomial

P (x) = (−x)m+1
p−1∑
i=0

(−x)i +
(
(−x)p − 1

)
· (8)

m∑
i=1

di(−x)m−i +
m+p∑

i=m+1

di(−x)m+p−i .

Such a polynomial is called the Ito-Sadahiro polyno-
mial of β.

Corollary 2 An Ito-Sadahiro number is an alge-
braic integer of degree smaller than or equal to m+p,
where m, p are given by (7).

It is useful to mention that the Ito-Sadahiro poly-
nomial is not necessarily irreducible over Q. As
an example one can take the minimal Pisot num-
ber. For such β, we have d−β(lβ) = 1 001ω, and
thus the Ito-Sadahiro polynomial is equal to P (x) =
x4−x3−x2+1 = (x−1)(x3−x−1), where x3−x−1
is the minimal polynomial of β.

Remark 3 Note that for p = 1 and dm+1 = 0, we
have d−β(lβ) = d1 . . . dm0ω, and the Ito-Sadahiro
polynomial of β is of the form

P (x) = (−x)m+1 + d1(−x)m + (d2 − d1)(−x)m−1 +

. . . + (dm − dm−1)(−x) − dm , (9)

and thus β is an algebraic integer of degree at most
m + 1.

Theorem 4 Let β be an Ito-Sadahiro number. All
roots γ, γ �= β, of the Ito-Sadahiro polynomial (in
particular all conjugates of β) satisfy |γ| < 2.

Proof. Since β is a root of its Ito-Sadahiro poly-
nomial P , there must exist a polynomial Q such that
P (x) = (x − β)Q(x). Let us first determine Q and
show that it is a monic polynomial with coefficients
in modulus not exceeding 1. The coefficients di in
the polynomial P in the form (8) are the digits of the
(−β)-expansion of lβ , and thus, by (5), they satisfy
di = #−βT i−1(lβ) − lβ$. Relation (4) then implies
T i(lβ) = −βT i−1(lβ)−#−βT i−1(lβ)−lβ$, wherefrom
we have

di = −T i(lβ) − βT i−1(lβ) .

For simplicity of notation in this proof, denote Ti =
T i(lβ), for i = 0, 1, . . . , m + p. Substituting di =
−Ti − βTi−1 into (8), we obtain

P (x) = (−x)m+1
p−1∑
i=0

(−x)i +
(
(−x)p − 1

)
·

m∑
i=1

(−Ti − βTi−1)(−x)m−i +

m+p∑
i=m+1

(−Ti − βTi−1)(−x)m+p−i =

(−x)m+1
p−1∑
i=0

(−x)i +
(
(−x)p − 1

)
(x − β) ·

m∑
i=2

Ti−1(−x)m−i + (10)

(x − β)
p∑

i=1

Tm+i−1(−x)p−i −(
(−x)p − 1

)
βT0(−x)m−1 + Tm − Tm+p .

First realize that Tm − Tm+p = 0, since d−β(lβ) is
eventually periodic with a preperiod of length m and

a period of length p. As T0 = T 0(lβ) = − β

β + 1
, we

can derive that

(−x)m+1
p−1∑
i=0

(−x)i −
(
(−x)p − 1

)
βT0(−x)m−1 =

(−x)m−1(x − β)(x − T0)
p−1∑
i=0

(−x)i .
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Putting back to (10), we obtain that the desired poly-
nomial Q defined by P (x) = (x − β)Q(x) is of the
form

Q(x) = (−x)m−1(x − T0)
p−1∑
i=0

(−x)i +

(
(−x)p − 1

) m∑
i=2

Ti−1(−x)m−i +

p∑
i=1

Tm+i−1(−x)p−i ,

which can be rewritten in another form, namely,

Q(x) = −(−x)m+p−1 +
m+p−2∑

i=m

(Tm+p−1−i − T0 − 1)(−x)i + (11)

m−1∑
i=0

(Tm+p−1−i − Tm−1−i)(−x)i .

Note that the coefficients at individual powers of −x
are of two types, namely

Tm+p−1−i − T0 − 1 ∈ [−1, 0) ,

and
Tm+p−1−i − Tm−1−i ∈ (−1, 1) .

In order to complete the proof, realize that every root
γ, γ �= β, of the polynomial P satisfies Q(γ) = 0. We
thus have

(−γ)m+p−1 =
m+p−2∑

i=m

(Tm+p−1−i − T0 − 1)(−γ)i +

m−1∑
i=0

(Tm+p−1−i − Tm−1−i)(−γ)i ,

and hence

|γ|m+p−1 ≤
m+p−2∑

i=0

|γ|i =

|γ|m+p−1 − 1
|γ| − 1

<
|γ|m+p−1

|γ| − 1
.

From this, we easily derive that |γ| < 2.
As a consequence, we can easily deduce the rela-

tion between Ito-Sadahiro numbers greater or equal
to 2 and Perron numbers.

Corollary 5 Every Ito-Sadahiro number β ≥ 2 is a
Perron number.

In a recent preprint [9], it is shown that also Ito-
Sadahiro numbers β < 2 are Perron numbers.

4 Periodic expansions in the
Ito-Sadahiro system

Representations of numbers in the numeration sys-
tem with a negative base from the point of view of
dynamical systems have been studied by Frougny and
Lai [7]. They have shown the following statement.
Theorem 6 If β is a Pisot number, then d−β(x) is
eventually periodic for any x ∈ Iβ ∩ Q(β).

In particular, their result implies that every Pisot
number is an Ito-Sadahiro number. Here, we show a
‘reversed’ statement.

Theorem 7 If any x ∈ Iβ ∩Q(β) has eventually pe-
riodic (−β)-expansion, then β is either a Pisot num-
ber or a Salem number.

Proof. First realize that since l−β ∈ Q(β), by as-
sumption, d−β(lβ) is eventually periodic, and thus β
is an Ito-Sadahiro number. Therefore, using Corol-
lary 2, β is an algebraic integer. It remains to show
that all conjugates of β are in modulus smaller than
or equal to 1.

Consider a real number x whose (−β)-expansion
is of the form d−β(x) = x1x2x3 . . . We now show that

x1 = x2 = . . . = xk−1 = 0 and xk �= 0

implies

|x| ≥ 1
βk(β + 1)

. (12)

In order to see this, we estimate the series

|x| =
∣∣∣ xk

(−β)k
+

∞∑
i=1

xk+i

(−β)k+i

∣∣∣ ≥ 1
βk

− 1
βk

∣∣∣ ∞∑
i=1

xk+i

(−β)i

∣∣∣ .
Since the set D−β of all (−β)-expansions is shift in-

variant, the sum
∞∑

i=1

xk+i

(−β)i
is a (−β)-expansion of

some y ∈ Iβ . Therefore we can write

|x| ≥ 1
βk

− 1
βk

|y| ≥ 1
βk

− 1
βk

β

β + 1
=

1
βk(β + 1)

.

As β > 1, there exists L ∈ N such that

− β

β + 1
<

1
(−β)2L+1

.

Let M ∈ N satisfy M > 2L + 1. Choose a rational
number r such that

1
(−β)2L+1

< r <
1

(−β)2L+1
+

1
βM (β + 1)

. (13)

According to the auxiliary statement (12), the (−β)-
expansion of r must be of the form

r =
1

(−β)2L+1
+

∞∑
i=M+1

ri

(−β)i
. (14)
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As r is rational, by assumption, the infinite word
rM+1rM+2 . . . is eventually periodic and by sum-

ming a geometric series, the sum
∞∑

i=M+1

ri

(−β)i
can

be rewritten as

∞∑
i=M+1

ri

(−β)i
= c0 + c1β + . . . + cn−1β

n−1 ∈ Q(β) ,

where n is the degree of β.
In order to prove the theorem by contradiction,

assume that a conjugate γ �= β is in modulus greater
than 1. By application of the isomorphism between
Q(β) and Q(γ), we get

c0 + c1γ + . . . + cn−1γ
n−1 =

∞∑
i=M+1

ri

(−γ)i
,

and thus

r =
1

(−γ)2L+1
+

∞∑
i=M+1

ri

(−γ)i
. (15)

Subtracting (15) from (14), we obtain

0 <
∣∣∣ 1
(−β)2L+1

− 1
(−γ)2L+1

∣∣∣ ≤ (16)

∞∑
i=M+1

ri

∣∣(−β)−i − (−γ)−i
∣∣ ≤ 2#β$ηM+1

1 − η
,

where η = max{|β|−1, |γ|−1} < 1. Obviously, for
any M > 2L + 1, we can find a rational r satisfy-
ing (13) and thus derive the inequality (16). However,
the left-hand side of (16) is a fixed positive number,
whereas the right-hand side decreases to zero with
increasing M , which is a contradiction.

In order to stress the analogy of the Ito-Sadahiro
numeration system with Rényi β-expansions of num-
bers, recall that already Schmidt in [13] has shown
that for a Pisot number β, any x ∈ [0, 1) ∩ Q(β)
has an eventually periodic β-expansion and also, con-
versely, that every x ∈ [0, 1) ∩ Q(β) having an even-
tually periodic β-expansion force β is either a Pisot
number or a Salem number. In fact, the proof of The-
orem 6 given by Frougny and Lai, as well as our proof
of Theorem 7 are using the ideas presented in [13].

A special case of numbers with periodic (−β)-
expansion is given by those numbers x for which the
infinite word d−β(x) has suffix 0ω. We then say that
the expansion d−β(x) is finite. An example of such a
number is x = 0 with (−β)-expansion d−β(x) = 0ω.

As is shown in [10], if β <
1
2

(1 +
√

5), then x = 0

is the only number with finite (−β)-expansion. This
property of the Ito-Sadahiro numeration system has
no analogue in Rényi β-expansions; for positive base,
the set of finite β-expansions is always dense in [0, 1).

Just as in the numeration system with a positive
base, we can extend the definition of (−β)-expansions
of x to all real numbers x, and define the notion of a
(−β)-integer as a real number y such that

y = yk(−β)k + . . . + y1(−β) + y0 ,

where yk . . . y1y00ω is the (−β)-expansion of some
number in Iβ . The set of (−β)-integers is denoted
by Z−β. With this notation, we can write the set of
all numbers with finite (−β)-expansions as

Fin(−β) =
∞⋃

k=0

1
(−β)k

Z−β .

It is not surprising that the arithmetical properties
of β-expansions and (−β)-expansions depend on the
choice of the base β. It can be shown that both Zβ

and Z−β is closed under addition and multiplication
if and only if β ∈ N. On the other hand, Fin(β) and
Fin(−β) can have a ring structure even if β is not
an integer. Frougny and Solomyak [8] have shown
that if Fin(β) is a ring, then β is a Pisot number.
A similar result is given in [10] for a negative base:
Fin(−β) being a ring implies that β is either a Pisot
number or a Salem number. In [10] we also prove
the conjecture of Ito and Sadahiro that in the case
of quadratic Pisot base β the set Fin(−β) is a ring if
and only if the conjugate of β is negative.

5 Comments and open
questions

• Every Pisot number is a Parry number and every
Parry number is a Perron number, and neither
of these statements can be reversed. The for-
mer is a consequence of the mentioned result of
Schmidt, the latter statement follows for exam-
ple from the fact that every Perron number has
an associated canonical substitution ϕβ , see [4].
The substitution is primitive, and its incidence
matrix has β as its eigenvalue. The fixed point of
ϕβ is an infinite word which codes the sequence
of distances between consecutive β-integers.

• For the negative base numeration system, we can
derive from Theorem 6 that every Pisot number
is an Ito-Sadahiro number. From Corollary 5
we know that an Ito-Sadahiro number β ≥ 2 is
a Perron number. Based on our investigation,
we conjecture that for any Ito-Sadahiro number

β ≥ 1
2

(1 +
√

5), the sequence of distances be-

tween consecutive (−β)-integers can be coded by
a fixed point of a ‘canonical’ substitution which
is primitive and its incidence matrix has β2 for
its dominant eigenvalue. Thus we expect that
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every Ito-Sadahiro number β ≥ 1
2

(1 +
√

5) is

also a Perron number. In the case that β <
1
2

(1 +
√

5), we have Z−β = {0} and so the situ-

ation is not at all obvious.
• In [14], Solomyak has explicitly described the set

of conjugates of all Parry numbers. In particu-
lar, he has shown that this set is included in the

complex disc of radius
1
2

(1 +
√

5), and that this

radius cannot be diminished. For his proof it was
important that all conjugates of a Parry number
are roots of a polynomial with real coefficients in
the interval [0, 1). In the proof of Theorem 4 we
show that conjugates of an Ito-Sadahiro number
are roots of a polynomial (11) with coefficients
in [−1, 1]. From this, we derive that conjugates
of Ito-Sadahiro numbers lie in the complex disc
of radius ≤ 2. We do not know whether this
value can be diminished.
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