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lto-Sadahiro numbers vs. Parry numbers

7. Masékova, E. Pelantova

Abstract

We consider a positional numeration system with a negative base, as introduced by Ito and Sadahiro. In particular,

we focus on the algebraic properties of negative bases —3 for which the corresponding dynamical system is sofic, which

happens, according to Ito and Sadahiro, if and only if the (—f3)-expansion of —

is eventually periodic. We call

such numbers 3 Ito-Sadahiro numbers, and we compare their properties with those of Parry numbers, which occur in

the same context for the Rényi positive base numeration system.

Keywords: numeration systems, negative base, Pisot number, Parry number.

1 Introduction

The expansion of a real number in the positional
number system with base 5 > 1, as defined by
Rényi [12] is closely related to the transformation
T:1]0,1) — [0,1), given by the prescription T'(x) :=
Bx — |Bz|. Every x € [0,1) is a sum of the infinite
series

= s i—
xzzﬁ, where z; =[BT Y(z)] (1)
=1
fori=1,2,3,...

Directly from the definition of the transformation 7'
we can derive that the ‘digits’ x; take values in the set
{0,1,2,...,[B] — 1} for i = 1,2,3,.... The expres-
sion of z in the form (1) is called the 3-expansion of
x. The number z is thus represented by the infinite

word dg(z) = mizaws... € AN over the alphabet
A={0,1,2,...,[F] —1}.

From the definition of the transformation 7" we
can derive another important property, namely that
the ordering on real numbers is carried over to the
ordering of (B-expansions. In particular, we have for
z,y € [0,1) that

r<y < dg(z) 2ds(y),

where < is the lexicographical order on AN, (order-
ing on the alphabet A isusual, 0 <1 <2 < ... <
(6] = 1).

In [11], Parry has provided a criterion which de-
cides whether an infinite word in .AN is or not a (-
expansion of some real number x. The criterion is
formulated using the so-called infinite expansion of
1, denoted by dj(1), defined as a limit in the space

.AN equipped with the product topology, by

di(1) := Elir(r)lJr dg(l—¢).

According to Parry, the string zizox3 ... € .AN rep-
resents the 8-expansion of a number x € [0,1) if and
only if

TiTig1Ti42 -+ - = d;(l) (2)
for every i=1,2,3,...

Condition (2) ensures that the set Dg = {dg(x) |
x € [0,1)} is shift invariant, and so the closure of Dg
in AN, denoted by Sg, is a subshift of the full shift
AN,

The notion of g-expansion can naturally be ex-
tended to all non-negative real numbers: The expres-
sion of a positive real number y in the form

y = Bty B 2B+, (3)
where k € Z and yryr—1yr—2 ... € Dg,

is called the J-expansion of y.

Real numbers y having in the S-expansion of |y|
vanishing digits y; for all i < 0 are usually called (-
integers, and the set of (-integers is denoted by Zg.
The notion of S-integers was first considered in [3] as
an aperiodic structure modeling non-crystallographic
materials with long range order, called quasicrystals.
Numbers y with finitely many non-zero digits in the
[-expansion of |y| form the set denoted by Fin(3).

The choice of the base 3 > 1 strongly influences
the properties of J-expansions. It turns out that an
important role among bases is played by such num-
bers 8 for which dj3(1) is eventually periodic. Parry
himself called these bases beta-numbers; now these
numbers are commonly called Parry numbers. We
can demonstrate the exceptional properties of Parry
numbers on two facts:

e The subshift S is sofic if and only if 3 is a Parry
number [6].
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e Distances between consecutive [-integers take
finitely many values if and only if § is a Parry
number [15].

Recently, Ito and Sadahiro [5] suggested a study
of positional numeration systems with a negative
base —(3, where 8 > 1. The representation of real
numbers in such a system is defined using the trans-

formation T : [lg,rg) — [lg,rg), where Iz = _%’
Tﬁ=1+lﬁ=—1+ﬂ,

T(z):=—pzx— |0z —1l5]. (4)
Every real z € Ig := [lg,73) can be written as

T=2 o ®

i=1

where z; = | AT (x) — 5] for i = 1,2,3,...

The above expression is called the (—f)-
expansion of x. It can also be written as the infi-
nite word d_g(x) = x1xax3... We can easily show
from (4) that the digits z;, i > 1, take values in the
set A = {0,1,2,...,[8]}. In this case, the order-
ing on the set of infinite words over the alphabet A
which would correspond to the ordering of real num-
bers is the so-called alternate ordering: We say that
T1T2T3 ... <u¢ Y1Y2ys ... if for the minimal index j
such that x; # y; it holds that x;(—1)7 < y;(—1).
In this notation, we can write for arbitrary x,y € I3
that

<y <= d_g(®) 2 d_sy).

In their paper, Ito and Sadahiro have provided a
criterion to decide whether an infinite word .AN be-
longs to the set of (—f)-expansions, i.e. to the set
D_p ={d_pg(z) | x € I3}. This time, the criterion is
given in terms of two infinite words, namely

d_g(lg) and d_ﬁ(rg) = ELII(I)IJF d_g(rg — e’:‘) .
These two infinite words have a close relation: If
d_p(lg) is purely periodic with odd period length, i.e.
d_p(lg) = (didz . .. dag+1)“, then we have d* 5(rg) =
(0d1d2 o (dagy1 — 1))‘”. (As usual, the notation w®
stands for infinite repetition of the string w.) In all
other cases we have d” 5(rg) = 0d_3(ls).

Ito and Sadahiro have shown that an infinite
word x12ox3 . . . represents a (—f)-expansion of some
x € [lg, rg) if and only if for every ¢ > 1 it holds that

d_g(lg) Sate TiTip1Tit2 -+ =an dtﬂ(rg) . (6)

The above condition ensures that the set D_g of in-
finite words representing (—/3)-expansions is shift in-
variant. In [5] it is shown that the closure of D_g

60

defines a sofic system if and only if d_g(l) is even-
tually periodic.

By analogy with the definition of Parry numbers,
we suggest that numbers 5 > 1 such that d_g(lg) is
eventually periodic be called Ito-Sadahiro numbers.
The relation of the set of Ito-Sadahiro numbers and
the set of Parry numbers is not obvious. Bassino [2]
has shown that quadratic numbers, as well as cubic
numbers which are not totally real, are Parry if and
only if they are Pisot. For the same class of num-
bers, we prove in [10] that § is Ito-Sadahiro if and
only if it is Pisot. This means that notions of Parry
numbers and Ito-Sadahiro numbers on the mentioned
type of irrationals do not differ. This would support
the hypothesis stated in the first version of this pa-
per, namely that the set of Parry numbers and the
set of Ito-Sadahiro numbers coincide. However, dur-
ing the refereeing process Liao and Steiner [9] found
an example of a Parry number which is not an Ito-
Sadahiro number, and vice-versa.

The main results of this paper are formulated as
Theorems 4 and 7. Theorem 4 gives a bound on the
modulus of conjugates of Ito-Sadahiro numbers; The-
orem 7 shows that periodicity of (—f)-expansion of
all numbers in the field Q(3) requires 3 to be a Pisot
or Salem number. Statements which we prove, as well
as results of other authors that we recall, demonstrate
similarities between the behaviour of (3-expansions
and (—f)-expansions. We mention also phenomena
in which the two essentially differ.

2 Preliminaries

Let us first recall some number theoretical notions. A
complex number [ is called an algebraic number, if it
is a root of a monic polynomial 2" +a,_1z" *+...+
a1x + ag, with rational coefficients ay, . ..,a,—1 € Q.
A monic polynomial with rational coefficients and
root (3 of the minimal degree among all polynomials
with the same properties is called the minimal poly-
nomial of §, and its degree is called the degree of 3.
The roots of the minimal polynomial are algebraic
conjugates.

If the minimal polynomial of 5 has integer coeffi-
cients, ( is called an algebraic integer. An algebraic
integer $ > 1 is called a Perron number, if all its con-
jugates are in modulus strictly smaller than 5. An
algebraic integer 3 > 1 is called a Pisot number, if all
its conjugates are in modulus strictly smaller than 1.
An algebraic integer 5 > 1 is called a Salem number,
if all its conjugates are in modulus smaller than or
equal to 1 and § is not a Pisot number.

If § is an algebraic number of degree n, then the
minimal subfield of the field of complex numbers con-
taining [ is denoted by Q(3) and is of the form

QB) ={co+c1B+...4co1f" | €Q}.
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If ~ is a conjugate of an algebraic number (3, then
the fields Q(5) and Q(v) are isomorphic. The corre-
sponding isomorphism is given by

coteif+.. . Aen 1V = oyt A1y

In particular, this means that § is a root of some
polynomial f with rational coefficients if and only if
v is a root of the same polynomial f.

3 Ito-Sadahiro polynomial

From now on, we shall consider for bases of the
numeration system only Ito-Sadahiro numbers, i.e.
numbers (3 such that

d_p(p) =dy...dm(dms1 - dmsp)”.  (7)

Without loss of generality we shall assume that m >
0, p > 1 are minimal values so that d_g(Ig) can be

written in the above form. Recall that I3 = —

g+1
Therefore (7) can be rewritten as
B _d _dm
311 —ﬁ+"'+(—ﬂ)m+
dm—‘,—l dm.l,.p ) > 1
(7(—ﬂ)m+1 +...+ (—B)m+r ; (—B)ri )
and after arrangement
—ﬁ dl dm (_ﬂ)p
0= — +... .
R I ) O ) T
dm+1 dm+p )
((—ﬂ)m“ T )

Multiplying by (—8)™ ((—3)? —1), we obtain the fol-
lowing lemma.

Lemma 1 Let 8 be an Ito-Sadahiro number and let
d_g(lg) be of the form (7). Then (8 is a root of the
polynomial

P(z) = (=2)"* Y (=2) + ((-z)" = 1) - (8)
=0

m m—+p
Zdi(_x)m—i + Z di(_x)m—i-p—i )
=1 i=m+1

Such a polynomial is called the Ito-Sadahiro polyno-
mial of 3.

Corollary 2 An Ito-Sadahiro number is an alge-
braic integer of degree smaller than or equal to m+p,
where m, p are given by (7).

It is useful to mention that the Ito-Sadahiro poly-
nomial is not necessarily irreducible over Q. As
an example one can take the minimal Pisot num-
ber. For such 8, we have d_g(lg) = 1001*, and
thus the Ito-Sadahiro polynomial is equal to P(x) =
ot —a® — 2?41 = (z—1)(2® -2 —1), where 2® —z—1
is the minimal polynomial of 3.

Remark 3 Note that for p =1 and dy41 = 0, we
have d_g(lg) = di...d,n0%, and the Ito-Sadahiro
polynomial of B is of the form

P(x) = (=)™ 4 di (=)™ + (da — dy)(—2)" " +
ot (A — di—1)(—2) — dim 9)

and thus 3 is an algebraic integer of degree at most
m+ 1.

Theorem 4 Let 3 be an Ito-Sadahiro number. All
roots v, v # B, of the Ito-Sadahiro polynomial (in
particular all conjugates of B) satisfy |y| < 2.

Proof.  Since 3 is a root of its Ito-Sadahiro poly-
nomial P, there must exist a polynomial ) such that
P(z) = (z — B)Q(z). Let us first determine @ and
show that it is a monic polynomial with coeflicients
in modulus not exceeding 1. The coefficients d; in
the polynomial P in the form (8) are the digits of the
(—p)-expansion of I3, and thus, by (5), they satisfy
di = |-BT"*(Ig) — I3). Relation (4) then implies
Ti(lg) = =BT Y (1g)— | -BT" *(I3) — 3], wherefrom
we have ‘ ‘
di = =T"(l3) = BT (ls) -

For simplicity of notation in this proof, denote T; =
T'(lg), for i = 0,1,...,m + p. Substituting d; =
—T; — BT;_1 into (8), we obtain

P(x) = (=2)"* Y (=a)' + (o)’ = 1) -
=0

Z(—TZ — ﬂTi_l)(—Jf)m_i +
z:n+p |
> (T BT ) (=)™ =
i=m-+1
(=)™ () + (o) — 1) (@ = B) -
=0
ZTi_l(—x)m‘i + (10)

(x —B) Z Tongia(—x)P" —

((—2)? = 1)BTo(—2)™ " + Ton — Tontp -

First realize that T;,, — Tph4p = 0, since d_g(lg) is
eventually periodic with a preperiod of length m and

a period of length p. As Ty = T°(lg) = we

__B
B+1
can derive that
(=2)™ Y (=)' = ((—a)” = 1)BTo(—2)" " =
i=0
(—2)" Yz = B)(z — To) 4 (—z)".
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Putting back to (10), we obtain that the desired poly-
nomial @ defined by P(z) = (z — 8)Q(x) is of the
form

p—1
Q(z) = (—z)™ Yz — Tp) Z
=0

((—x)p — 1) ZTZ 1( Ji)mil +

P
Z Tm—‘,—i—l (_'r)p_l )
i=1

which can be rewritten in another form, namely,

Qx) = —(=a)" 1 4
+p—2
(Tontp—1-i = To = 1)(—=)' +  (11)

3

«.
Il

m
-1

3

(Tonp-1—i = Tm—1-3)(—x)" .

Il
o

i

Note that the coefficients at individual powers of —x
are of two types, namely

Tm+p717i —Ty—1€ [—1,0) s
and

Terpflfi - Tmflfi € (_17 ]-) '

In order to complete the proof, realize that every root
v, ¥ # B, of the polynomial P satisfies Q(y) = 0. We
thus have

m+p—2
(—y)™HP = (Totp—1—i —To —1)(—)* +
=m
m—1
(Terpflfi - Tmflfi)(_’y)l )
i=0
and hence
m+p—2
m+p—1 < T
| < Y W=
i=0
Pt =1y
vl-1 -1

From this, we easily derive that |y| < 2.

As a consequence, we can easily deduce the rela-
tion between Ito-Sadahiro numbers greater or equal
to 2 and Perron numbers.

Corollary 5 Fwvery Ito-Sadahiro number § > 2 is a
Perron number.

In a recent preprint [9], it is shown that also Ito-
Sadahiro numbers 8 < 2 are Perron numbers.
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4 Periodic expansions in the
Ito-Sadahiro system

Representations of numbers in the numeration sys-
tem with a negative base from the point of view of
dynamical systems have been studied by Frougny and
Lai [7]. They have shown the following statement.
Theorem 6 If 8 is a Pisot number, then d_g(z) is
eventually periodic for any x € Ig N Q(F).

In particular, their result implies that every Pisot
number is an Ito-Sadahiro number. Here, we show a
‘reversed’ statement.

Theorem 7 If any x € IgNQ(B) has eventually pe-
riodic (—f)-expansion, then 3 is either a Pisot num-
ber or a Salem number.

Proof.  First realize that since I_g € Q(3), by as-
sumption, d_g(l) is eventually periodic, and thus
is an Ito-Sadahiro number. Therefore, using Corol-
lary 2, 3 is an algebraic integer. It remains to show
that all conjugates of § are in modulus smaller than
or equal to 1.

Consider a real number « whose (—f)-expansion
is of the form d_g(x) = x12223 ... We now show that

r1=x3=...=2p_1 =0 and xr #0
implies
1

T > == 12

2 FED 12
In order to see this, we estimate the series
o= |5 +Z P

k+z = gk gk P (_ﬁ)z

Since the set D_g of all (—f)-expansions is shift in-

variant, the sum Z k;;l is a (—f)-expansion of
i=1
some y € Ig. Therefore we can write

N S S S R
gF Y B Tl G
As B > 1, there exists L € N such that

1
s <

BT =

Let M € N satisfy M > 2L + 1. Choose a rational
number r such that

1 1 1

Cpe << e gy Y

According to the auxiliary statement (12), the (—03)-
expansion of r must be of the form

|z >
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As r is rational, by assumption, the infinite word

TAM+1TM42 - - - 1S eventually periodic and by sum-
(o)
. . . T
ming a geometric series, the sum E ( é)l can

i=M+1
be rewritten as

(oo}

> %=CO+clﬁ+...+cn_1ﬂ"‘1EQ(ﬂ),

i=M+1 A

where n is the degree of (.

In order to prove the theorem by contradiction,
assume that a conjugate v # 3 is in modulus greater
than 1. By application of the isomorphism between

Q(B) and Q(~), we get

o0
r
co+cyy—|—...—|—cn_w”*1: Z L.

and thus

1 > T
r= (—r)2L+1 +i:%:+1 ) (15)

Subtracting (15) from (14), we obtain

1 1
0< ‘(_5)2L+1 o (_7)2L+1‘ < (16)
% ) ] M+1
> nl=8) = (07 <208 —.
i=M+1 N

where = max{|3|™*,|y|"'} < 1. Obviously, for
any M > 2L + 1, we can find a rational r satisfy-
ing (13) and thus derive the inequality (16). However,
the left-hand side of (16) is a fixed positive number,
whereas the right-hand side decreases to zero with
increasing M, which is a contradiction.

In order to stress the analogy of the Ito-Sadahiro
numeration system with Rényi S-expansions of num-
bers, recall that already Schmidt in [13] has shown
that for a Pisot number 8, any = € [0,1) N Q(B)
has an eventually periodic S-expansion and also, con-
versely, that every « € [0,1) N Q(5) having an even-
tually periodic S-expansion force [ is either a Pisot
number or a Salem number. In fact, the proof of The-
orem 6 given by Frougny and Lai, as well as our proof
of Theorem 7 are using the ideas presented in [13].

A special case of numbers with periodic (—0)-
expansion is given by those numbers z for which the
infinite word d_g(x) has suffix 0“. We then say that
the expansion d_g(x) is finite. An example of such a
number is = 0 with (—3)-expansion d_g(x) = 0.
As is shown in [10], if § < %(1 +V/5), then & = 0
is the only number with finite (—/)-expansion. This
property of the Ito-Sadahiro numeration system has

no analogue in Rényi 3-expansions; for positive base,
the set of finite 3-expansions is always dense in [0, 1).

Just as in the numeration system with a positive
base, we can extend the definition of (—()-expansions
of z to all real numbers x, and define the notion of a
(—0)-integer as a real number y such that

y=ue(=B)"+ ...+ (=B +wo,

where yi ...y19500% is the (—03)-expansion of some
number in Ig. The set of (—f)-integers is denoted
by Z_p3. With this notation, we can write the set of
all numbers with finite (—f)-expansions as

1
(—B)*

Fin(-3) = | J Z_ 5.
k=0

It is not surprising that the arithmetical properties
of B-expansions and (—(3)-expansions depend on the
choice of the base 5. It can be shown that both Zg
and Z_g is closed under addition and multiplication
if and only if 8 € N. On the other hand, Fin(3) and
Fin(—f) can have a ring structure even if 5 is not
an integer. Frougny and Solomyak [8] have shown
that if Fin(f) is a ring, then § is a Pisot number.
A similar result is given in [10] for a negative base:
Fin(—p) being a ring implies that 3 is either a Pisot
number or a Salem number. In [10] we also prove
the conjecture of Ito and Sadahiro that in the case
of quadratic Pisot base 3 the set Fin(—0) is a ring if
and only if the conjugate of § is negative.

5 Comments and open
questions

e Every Pisot number is a Parry number and every
Parry number is a Perron number, and neither
of these statements can be reversed. The for-
mer is a consequence of the mentioned result of
Schmidt, the latter statement follows for exam-
ple from the fact that every Perron number has
an associated canonical substitution ¢g, see [4].
The substitution is primitive, and its incidence
matrix has [ as its eigenvalue. The fixed point of
¢ is an infinite word which codes the sequence
of distances between consecutive S-integers.

e For the negative base numeration system, we can
derive from Theorem 6 that every Pisot number
is an Ito-Sadahiro number. From Corollary 5
we know that an Ito-Sadahiro number 8 > 2 is
a Perron number. Based on our investigation,
we conjecture that for any Ito-Sadahiro number

1
8 > 5(1 + 1/5), the sequence of distances be-

tween consecutive (—f)-integers can be coded by
a fixed point of a ‘canonical’ substitution which
is primitive and its incidence matrix has 3* for
its dominant eigenvalue. Thus we expect that
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1
every Ito-Sadahiro number 8 > 5(1 + \/5) is
also a Perron number. In the case that § <
1
5(1 +/5), we have Z_5 = {0} and so the situ-

ation is not at all obvious.

In [14], Solomyak has explicitly described the set
of conjugates of all Parry numbers. In particu-
lar, he has shown that this set is included in the

1
complex disc of radius 5(1 +/5), and that this

radius cannot be diminished. For his proof it was
important that all conjugates of a Parry number
are roots of a polynomial with real coefficients in
the interval [0,1). In the proof of Theorem 4 we
show that conjugates of an Ito-Sadahiro number
are roots of a polynomial (11) with coefficients
in [—1,1]. From this, we derive that conjugates
of Tto-Sadahiro numbers lie in the complex disc
of radius < 2. We do not know whether this
value can be diminished.
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