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Abstract

This paper deals with the plasma flow shape depending on the electrode form of a gliding discharge plasma-chemical
reactor, and with the temperature distribution along the direction of the plasma flow in one specific electrode form. The
shape of the electrodes and their mutual position has a significant influence on the design of a gliding discharge reactor
and its applications. It is crucial to know the temperature distribution in the reactor’s chamber design and discharge
application.
Three configurations with model shapes of wire electrodes were therefore tested (low-divergent, circular, high-

divergent) and the plasma flow was described. The experiments were performed in air at atmospheric pressure and
at room temperature. In order to map the reactive plasma region of the flow we investigated the visible spectral lines
that were emitted. The gas temperature was measured using an infrared camera.
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1 Introduction

In recent years there have been many physical and
technological applications of gliding discharge as “an
auto-oscillating phenomenon developing between at
least two electrodes that are immersed in a lami-
nar or turbulent gas flow” [1]. The gliding discharge
configuration its parameters, e. g. discharge volt-
age and current, injected working gas flow rate, and
shape of the electrodes. In this paper we have fo-
cused on the emitted spectra and the plasma flow
temperature which were observed by changing two
parameters. The spectra were measured for three
model shapes of electrodes (low-divergent, circular
and high-divergent). Motivated by utilization of the
high-divergent electrode configuration, the tempera-
ture of the gliding discharge plasma flow was mea-
sured for the high-divergent configuration and for
three working gas flow rates (10, 20 and 30 slm).

2 Experimental

The apparatus (Figure 1) used in our experiments
consisted of a plasma chemical reactor containing
electrodes (copper wires 1 mm in diameter shaped
into the required form — Figure 2), a nozzle, and the
gas distribution system (flowmeter, reduction valve,
piping and air compressor).

The electrodes were connected to the high volt-
age power source (U = 8 kV, f = 50 Hz). The in-
terelectrode distance at the point of initial discharge
breakdown was 3 mm. The reduction valve held the
gas flow to average values of Q = 10, 20 and 30 slm.
The experiment was performed at temperature about

21 ◦C, atmospheric pressure 101 kPa and air humid-
ity about 30 %.

Fig. 1: Plasma chemical reactor, gas distribution system
and spectroscope

Fig. 2: Shape of the electrodes: (a) – low-divergent, (b) –
circular, (c) – high-divergent

2.1 Electrodes

Three wire electrode configurations were tested with
model electrode shapes — “low-divergent”, “circu-
lar” and “high-divergent” (Figure 2). Two 130 mm
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long straight electrodes represented the low-divergent
configuration, circular electrodes were formed by
a pair of ring-shaped electrodes 22 mm in radius, and
the high-divergent configuration was two sharp tri-
angular right angle-shaped electrodes. The model
shapes of the electrodes are represented by both low-
divergent and high-divergent configurations.

The photos in Figure 3 were taken using a Nikon
D90 camera and an AF-S Nikkor 18–200mm objec-
tive. The exposure was 1 s shutter speed, aperture
f/13. ISO 200 was used for the photography of low-
divergent configuration and ISO 160 was used for the
photography of circular and high-divergent configu-
ration.

Fig. 3: Plasma flows in low-divergent (a), circular (b),
high-divergent (c) electrode configuration, Q = 20 slm
(pictures not taken on the same scale)

2.2 Temperature and visible spectra

Temperature A basic analysis was performed of
the temperatures in the gliding discharge. We used
a GUIDE M8 infrared camera (Figure 4) for scan-
ning the observed space. The resolution of the mi-
crobolometer array was 160×120 pixels with spectral
range from 8µm to 14µm, temperature range from
−20 ◦C to 250 ◦C, and sensitivity ≤ 0.1 K [2].

For better temperature distribution visualization
in the gliding discharge plasma flow we used a set of
“optical fibre probes”, due to the low emissivity and
the low mass density of the plasma.

Fig. 4: GUIDE M8 infrared camera for measuring ther-
mal emission

Fig. 5: Horizontal projection of the experimental setup
with an SAD500 Avantes spectrometer and GUIDE M8
infrared camera (see also Figure 1)

The optical fibre probes were made of 50µm fibre
(taken from the GUMT206 Fibre Optic Cable (8 fi-
bre 50/125µm) [3]). The probes were placed in a
straight line in the xy-plane (Figure 5 and 1) with a
mutual distance of 5 mm in the direction of the posi-
tive z-axis direction — all probes were perpendicular
to the plasma flow and were heated by circumfluent
plasma. The GUIDE M8 infrared camera was placed
as shown in Figure 5. The optical fibre probes were
scanned by infrared camera approx. at an angle of
45 ◦. The distance from the camera to the probes was
about 270 mm.
Spectra A SAD500 Avantes spectrometer

with fiber for transmission of the light from the dis-
charge was used for measuring of the visible spec-
tra. The spectral range of the spectrometer was from
190 nm to 861 nm. The resolution of the spectrometer
was 0.328 mm. The spectrometer fiber was set per-
pendicular to the z-axis in the direction of the y-axis
(Figure 5). To scan the whole plasma flow axial area,
the fiber was moved axially in the z-axis direction.

3 Interpretation

The spectra in the visible wavelength range were
taken in all three configurations. As the plasma re-
gion was relatively small, the temperature was mea-
sured indirectly along the z-axis only in the high-
divergent electrode configuration.

3.1 Spectra

The ionized flow regions were registered by visible
spectral line intensities. Each intensity value in the
graphs in Figures 6, 7 and 8 represents the average
value of 7 measurements.

Based on the NIST database [4], we found four
spectral lines — λA, λB, λC and λD — typical for
low temperature plasma in air.
λA = 463.061 nm NIII; 2s2p(3P◦)4p− 2s2p(3P◦)5s,

λB = 463.885 nm OII; 2s
22p2(3P)3s− 2s22p2(3P)3p,

λC = 500.113 nm NII; 2s
22p(2P◦)3p− 2s22p(2P◦)3d,

λD = 567.602 nm NII; 2s
22p(2P◦)3s− 2s22p(2P◦)3p.
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Fig. 6: Intensity distribution along the z-axis in the low-
divergent electrode configuration, Q = 20 slm

Fig. 7: Intensity distribution along the z-axis in circular
electrode configuration, Q = 20 slm

Fig. 8: Intensity distribution along the z-axis in high-
divergent electrode configuration, Q = 20 slm

In the UV spectra range we also found the first
negative system of N+2 and the second positive system
of N2 in all three measured spectra. This is shown in
Figures 6, 7 and 8 as the visible band around wave-
length λE∼ 390 nm.

To detect the plasma particles excitations it is
possible to observe the measured spectra, e. g. the
peaks λA . . . λD and the spectral band λE. The in-
tensity distribution of peaks (λA . . . λE) in the z-axis
direction (Figure 9) corresponds to the shape of the
plasma region (Figure 3(c)). From the results, we

expect that the most excited plasma region will be
found in the ignition area (Figures 6, 7, 8 and 9).
The plasma distribution for the individual configura-
tions in the interelectrode region can be described as
follows:
• In the low-divergent configuration (Figures 3(a)

and 6), a typical band λE ∼ 390 nm was found
along the z-axis through the whole interelectrode
region (Figure 6) and plasma channels were orig-
inated on the whole length of the electrodes.

• In the circular configuration, the plasma region
was twice as long as the radius of the circular
electrodes (Figures 3(b) and 7). An outstanding
“λE band” was also observed.

• In the high-divergent configuration the plasma
outreached the interelectrode region by about
10 mm (Figures 3(c), 8 and 9). A sharp transi-
tion was found between the ionized and neutral
parts of the flow (z ∼ 20 mm on Figure 9).

Fig. 9: Intensity distribution along the z-axis in high-
divergent electrode configuration, Q = 20 slm

3.2 Temperature

Motivated by actual utilization of the high-divergent
electrode configuration, we measured the tempera-
ture distribution in the interelectrode region along
the z-axis in this configuration. To visualize the
temperature in the infrared camera more easily we
scanned the interelectrode space with an added set
of optical fiber probes (Figure 5). From the overall
infrared picture (Figure 10) we selected the required
cross-section (green line) which included the scanned
“probes” heated by the gas flow.

Fig. 10: Infrared picture from the GUIDE M8 infrared
camera
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Five infrared pictures were taken (Figure 10) by
the GUIDE M8 for each gas flow Q = 10, 20 and
30 slm. Then the temperatures of the probes were
extracted and the distribution containing the mean
values was plotted for the gas flows (Figure 11).

Fig. 11: Temperature distribution along the z-axis for
gas flows Q = 10, 20 and 30 slm (high-divergent configu-
ration)

As shown in the graph (Figure 11), the gliding dis-
charge axial temperature distribution depended on
the gas flow. With increasing gas flow values Q, the
temperature of the probe decreased. The maxima of
the curves in Figure 11 were approximately at the
end of the discharge region, e. g. z ∼ 20 mm.

4 Summary

The connection between three basic electrode pro-
files (low-divergent, circular, high-divergent) and the
appropriate plasma flow shapes in the gliding dis-
charge reactor has been studied. The experiments
were carried out in the air at room temperature and
atmospheric pressure. The most ionized region was
identified by the visible spectral lines of the observed
plasma, and was located in the ignition area.

In the high-divergent configuration, the tempera-
ture was measured indirectly along the perpendicular
axis for three gas flow values. The hottest region was
found at the end of the plasma region, and its temper-
ature depended on the gas flow, i. e. with increased
flow rate the overall temperature dropped.

Our results can be helpful for finding suitable glid-
ing reactor electrode shapes, i. e. the shapes of the
plasma flow in the reactor, and in technological ap-
plications of the discharge (e. g. decompositions [5],
surface treatment, etc.).
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