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Abstract

This paper presents a powerful supervisory power system stabilizer (PSS) using an adaptive fuzzy logic controller driven
by an adaptive fuzzy set (AFS). The system under study consists of two synchronous generators, each fitted with a PSS,
which are connected via double transmission lines. Different types of PSS-controller techniques are considered. The
proposed genetic adaptive fuzzy logic controller (GAFLC)-PSS, using 25 rules, is compared with a static fuzzy logic
controller (SFLC) driven by a fixed fuzzy set (FFS) which has 49 rules. Both fuzzy logic controller (FLC) algorithms
utilize the speed error and its rate of change as an input vector. The adaptive FLC algorithm uses a genetic algorithm
to tune the parameters of the fuzzy set of each PSS. The FLC’s are simulated and tested when the system is subjected
to different disturbances under a wide range of operating points. The proposed GAFLC using AFS reduced the compu-
tational time of the FLC, where the number of rules is reduced from 49 to 25 rules. In addition, the proposed adaptive
FLC driven by a genetic algorithm also reduced the complexity of the fuzzy model, while achieving a good dynamic
response of the system under study.

Keywords: fuzzy logic controller: adaptive fuzzy set (AFS), fixed fuzzy set (FFS) and genetic algorithm.

1 Introduction
Researchers usually employ the simple one-machine
infinite-bus system to study a novel or modified
control technique. This analysis of the simpli-
fied model is only indicative of generator behav-
ior when connected to a rigid system. However, it
cannot provide complete information about genera-
tor behavior when connected to an oscillating sys-
tem of comparable size. This can be achieved by
replacing the infinite bus by another synchronous
generator. In this case, the mutual influence be-
tween the two machines depends not only on the
relative sizes of the two machines, but also on
their parameters and the initial working condi-
tions [1].
The main stability-indicating factor in the two-

machine system is the instantaneous variation of the
angle between their rotors, which must be convergent
for “synchronous” and “steady state” operation. If
the system is subjected to various disturbances, e.g.
a change in load, a sudden transient short circuit,
or some other abnormal conditions, the machines
will be able to remain synchronized if the angle be-
tween the rotors does not acquire an increasing man-
ner or does not “theoretically” exceed the stability
limit [2, 3].
In general, a study of a two-machine system is

acknowledged to represent a large power system con-
centrated in two distinct areas, and connected by a
tie-line or by a short transmission line.

2 Power system structure and
modeling

The system under study is shown in Figure 1. It
consists of two synchronous generators, connected to-
gether by two short parallel transmission lines. The
generators feed local loads at their terminal bus bars.
Each generator is equipped with an automatic volt-
age regulator (AVR) as the main excitation con-
trol. The PSS also supports the excitation control of
each generator. Each synchronous generator is rep-
resented by a third order model compromising three
mathematical equations: two electromechanical, and
one electromagnetic. A mathematical model of each
generator may be written as follows [4, 5]:

ω̇ =
1
M
(Tm − Te − TD), (1)

δ̇ = ωb(ω − 1), (2)

ė′q =
1

T ′
do

(EFD − e′q − (xd − x′
d)id), (3)

The electric output power is given by the following
equation:

Te ≈ Pe =

(
e′q · Vt

x′
d − xd

)
sin δ +

V 2t (x
′
d − xq)
2x′

dxq
sin 2δ

e′q = Vt + jx′
did + jxq(jiq) (4)
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Where: ω is the mechanical angular speed, M is the
inertia constant, and Tm, Te and TD are the mechan-
ical, electrical, and damping torques, respectively.
Symbol δ defines the power angle, and ωb is the base
angular speed. e′q is the voltage behind the transient
quadrature axis. T ′

do is the field winding open cir-
cuit time constant (sec). EFD defines the excitation
internal voltage of the machine, while xd and x′

d are
the synchronous and transient direct-axis reactances,
respectively, of the synchronous machine. Vt is the
terminal voltage of the machine. The dot denotes the
first time derivative of this variable.

Fig. 1: The two-machine system under study

The mathematical model of the AVR and the ex-
citer of each machine is given by [5]:

EFD =

(
KA

TA

)
(Vref − Vt + UPSS)−

(
EFD

TA

)
(5)

where

Vt =
√

V 2d + V 2q , Vd =
xqE sin(δ)
xe + xq

, Vq =
√

V 2t − V 2d .

In the above equation, Vref is the reference termi-
nal voltage, Upss is the output of the power system
stabilizer, TA is the exciter time constant, and Vd and
Vq are the direct and quadrature axis components of
the terminal voltage.
For the conventional lead-lag PSS (CPSS), the

following transfer function is considered during the
simulation phase of the system under study:

UPSS = − KI

KA

([
sTQ

1 + sTQ

]
×

[
1 + sT1
1 + sT2

])
× δ̇ (6)

Where, KI and KA are constants, TQ is the time
constant to be compensated, while T1 and T2 are
the time constants of the lead-lag compensating net-
work. More details of the CPSS can be found in
references [5, 6]. The values of these parameters and
the controller gains are given Appendix A. The sim-
ulation study of the two machines is intended to de-
termine their behavior in response to disturbances of
the driving torque and terminal voltage of each gen-
erator.

3 Fuzzy logic controller

Fuzzy control systems are rule-based systems. A set
of fuzzy rules represents the FLC mechanism for ad-
justing the effect of certain system stimuli. Thus, the
aim of fuzzy control systems is to replace a skilled hu-
man operator with a fuzzy rules-based system. The
FLC also provides an algorithm which can convert
the linguistic control strategy, based on expert knowl-
edge, to automatic control strategies. Figure 2 de-
picts the basic configuration of the FLC. It consists
of a fuzzification interface, a knowledge base, decision
making logic, and a defuzzification interface [7].

Fig. 2: Generic structure of the fuzzy logic controller

Fig. 3: Membership Functions (MFs) of Speed Deviation
for SFLC

Fig. 4: Membership Functions of Speed Deviation Change
for SFLC
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A. Global input variables

The fuzzy input vector of each SFLC-PSS of each
generator consists of two variables: generator speed
deviation, Δω, and speed deviation change, Δω′.
Two static fuzzy controllers are then designed; one
with seven linguistic variables, using fixed fuzzy sets,
for each input variable, as shown in Figures 3, 4.
The second SFLC has five linguistic variables, using
fixed fuzzy sets for each input variable, as shown in
Figures 6, 7 indicated by the solid lines. The fuzzy
sets for the output variable, based on seven fuzzy
sets, are shown in Figure 5, and the fuzzy sets for
the output variable, based on five fuzzy sets, are
shown in Figure 8 indicated by the solid lines. In
these Figures, linguistic variables used are: PL (Pos-
itive Large), PM (Positive Medium), PS (Positive
Small), Z (Zero), NS (Negative Small), NM (Nega-
tive Medium) and NL (Negative Large), as indicated
in Tables 1–2.

Table 1: The look-up table relating input and output
variables in a fuzzy set form for seven fuzzy sets of SFLC

Speed
Deviation
(Δω)

Speed
Deviation Change

(Δω′)

NL NM NS Z PS PM PL

NL NL NL NL NL NM PS Z

NM NL NM NM NM NS Z PS

NS NL NM NS NS Z PS PM

Z NL NM NS Z PS PM PL

PS NM NS Z PS PS PM PL

PM NS Z PS PM PM PL PL

PL Z PS PM PL PL PL PL

Table 2: A look-up table relating input and output vari-
ables in a fuzzy set form for five fuzzy sets for GAFLC

Speed
Deviation
(Δω)

Speed
Deviation Change

(Δω′)

NL NS Z PS PL

NL NL NL NL NS Z

NS NL NL NS Z PS

Z NL NS Z PS PL

PS NS Z PS PL PL

PL Z PS PL PL PL

The fuzzy input vector of each GAFLC-PSS of
each generator consists of the previous variables used
in SFLC with five linguistic variables using adaptive
fuzzy sets. Only five linguistic variables (LV) are

used for each of the input variables, as shown in Fig-
ures 6, 7, respectively. The output variable fuzzy set
is shown in Figure 8. In these Figures, the fuzzy set
of the related variables used with SFLC is indicated
by the solid lines, while the dotted lines represent
the simulation results of the fuzzy set when using
GAFLC. Figure 9 shows the fuzzy surface for the
rules. In these Figures, the LVs that we use are PL
(Positive Large), PS (Positive Small), Z (Zero), NS
(Negative Small) and NL (Negative Large), as indi-
cated in Table 2.

Fig. 5: Membership Functions of Stabilizing Signal for
SFLC

Fig. 6: Membership Functions (MFs) of Speed Deviation.
SFLC is indicated by solid lines, while GAFLC is indi-
cated by dotted lines

Fig. 7: Membership Functions of Speed Deviation
Change. SFLC is indicated by solid lines, while GAFLC
is indicated by dotted lines
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Fig. 8: Membership Functions of the Stabilizing Signal.
SFLC is indicated by solid lines, while GAFLC is indi-
cated by dotted lines

Fig. 9: Rules surface viewer for SFLC and GAFLC con-
trollers

B. Defuzzification method

The Minimum of Maximum value method was used
to calculate the output from the fuzzy rules. This
output is usually represented by a polyhedron map.
The defuzzification stage is executed in two steps.
First, minimummembership is selected from the min-
imum value of interest of the two input variables (Δω
and Δω′) with the related fuzzy set in that rule. This
minimum membership is used to rescale the output
rule, and then the maximum is taken to give the fi-
nal polyhedron map. Finally, the centroid or center
of area is used to compute the fuzzy output, which
represents the defuzzification stage [7–9].

4 Genetic algorithm for
optimizing fuzzy controllers

The adaptive fuzzy logic controller (GAFLC), using
an adaptive fuzzy set based on a genetic algorithm,
has the same inputs and output as the static fuzzy
logic controller (SFLC) [10]. However, GAFLC uses
five fuzzy sets for the inputs and output variable.
Thus the full rule-base is (25 rules). SFLC is defined
as an FLC using a fixed fuzzy set structure, as shown
in Figures 3–5, in case of seven FS. For five FS, it is
indicated by solid lines in Figures 6–8. The rules have

the general form given by the following statement:

If Vector (Δω), is NS and Change in Vector (Δω′)
is Z then Stabilizing Signal is NS.

where the membership functions (mfi) are defined as
follows:
mfj ∈ {NB, NS, Z, PS and PB} as in the static
fuzzy case. However, the output space has 5 dif-
ferent fuzzy sets. To accommodate the change
in operating conditions, the adaptation algorithm
changes the parameters of the input and output fuzzy
sets. The membership function parameters of the
FLCs are optimized on the basis of the Adapted
Genetic Algorithm with adjusting population size
(AGAPOP) [12]. The simulation results using the
GAFLC controller are denoted in dotted lines in Fig-
ures 6–8. This will be described later. AGAPOP is
used to calculate the optimum value of the fuzzy set
parameters based on the best dynamic performance
and domain search of the parameters [11]. The objec-
tive function used in the AGAPOP technique is given
by the following equation (F = 1/(1 + J)), where
(J) is the minimum cost function. AGAPOP uses
its operators and functions to find the values of the
fuzzy set parameters of the FL controllers to achieve
a better dynamic performance of the overall system.
These parameter values lead to the optimum value
for the control actions for which the system reaches
the desired values, while improving the percentage
of overshoot (P.O.S), the rising time and the oscilla-
tions.
The main aspect of the AGAPOP approach is to

optimize the fuzzy set parameters of FL controllers.
The flowchart procedure for the AGAPOP optimiza-
tion process is shown in Figure 10 [12].

Fig. 10: Flowchart of the AGAPOP approach for opti-
mizing MFs

10



Acta Polytechnica Vol. 52 No. 2/2012

Fig. 11: Roulette Wheel Selection Scheme

A. Representation of fuzzy set
parameters in GA

The fuzzy set parameters of FL controllers are for-
mulated using the AGAPOP approach [12], and are
represented in a chromosome. The fuzzy set parame-
ters of FL controllers are initially started using static
fuzzy set parameter values. The intervals of accept-
able values for each fuzzy set shape forming param-
eter (Δc = [cmin, cmax], and Δσ = [σmin, σmax] for
Gaussian) are determined based on 2nd order fuzzy
sets for all fuzzy sets, as explained in Appendix B.
The Gaussian shape is chosen in order to show how
the parameters of the fuzzy sets are formulated and
coded in the chromosomes.
The minimum performance criteria J are [8]:

J =
∫ T

0
(α1|e(t)|+ β1|e′(t)|+ γ1|e′′(t)|) dt (7)

where e(t) is equal to the average error of Δω1 and
Δω2. Parameters (α1, β1 and γ1) are weighting co-
efficients.

B. Coding of fuzzy set parameters

The coded parameters are arranged on the basis of
their constraints, to form a chromosome of the pop-

ulation. The binary representation is the coded form
for parameters with chromosome length equal to the
sum of the bits for all parameters. Tables 3, 4 show
the coded parameters of FLCs for machines 1 and 2,
respectively.

C. Selection function

The selection usually applies some selection pressure
by favoring individuals with better fitness. After pro-
creation, the suitable population consists, for exam-
ple, of L chromosomes which are all initially random-
ized [12, 14] and [16]. Each chromosome has been
evaluated and associated with fitness, and the cur-
rent population undergoes the reproduction process
to create the next population, as shown in Figure 11.
The chance on the roulette-wheel is adaptive, and is
given as Pl/

∑
Pl as in equation (8) [8]:

Pl =
1
Jl

, l ∈ {1, . . . , L} (8)

where Jl is the model performance encoded in the
chromosome measured in the terms used in equa-
tion (7).

D. Crossover and mutation operators

The mating pool is formed, and crossover is applied.
Then the mutation operation is applied followed by
the AGAPOP approach [12]. Finally, the overall fit-
ness of the population is improved. The procedure is
repeated until the termination condition is reached.
The termination condition is the maximum allowable
number of generations. This procedure is shown in
the flowchart given in Figure 10.

Table 3: Coded parameters of GAFLC for M/C # 1

Chromosome Sub-chromosome
of inputs

Sub-chromosome
of output

Δω1 Δω′
1

Stabilizing
Signal 1

Parameters c1, σ1, . . . , c5, σ5 c1, σ1, . . . , c5, σ5 c1, σ1, . . . , c5, σ5

30 2× 5 2× 5 2× 5

Table 4: Coded parameters of GAFLC for M/C # 2

Chromosome Sub-chromosome
of inputs

Sub-chromosome
of output

Δω2 Δω′
2

Stabilizing
Signal 2

Parameters c1, σ1, . . . , c5, σ5 c1, σ1, . . . , c5, σ5 c1, σ1, . . . , c5, σ5

30 2× 5 2× 5 2× 5
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5 Simulation results and
discussion

5.1 Dynamic performance due to
sudden load variation

The system data given in Appendix A is used to
test the proposed algorithm. Different simulation
computations have been performed, and results were
obtained for the two generators equipped with PSS
driven by SFLC based on adaptive fuzzy sets. The
simulation programs cover a wide range of operat-
ing conditions covering light, medium and heavy load
conditions. Light load is represented by assuming
both synchronous generators normally loaded and de-
livering 0.4 per unit (pu) active power (Pe) and 0.2
pu reactive power (Qe). In addition, the medium op-
erating points are considered when both generators
are normally delivering Pe and Qe equal to 0.65 and
0.45 pu, respectively. For the case of heavy load, Pe

and Qe for the two generators, equal 0.9 and 0.4 pu,
respectively.

5.2 Mechanical Torque Disturbance

A. Light load conditions

The first case was studied when both synchronous
generators were loaded by Pe, Qe equal to 0.4, 0.2,
respectively. Generator (Gen-1) was subjected to a
10% step increase in the reference mechanical torque.
The torque was then returned back to the initial con-
dition. Figures 12a, b, c show the angular displace-
ment between the rotors of the two machines (δ),
in radians, and the speed deviation, Δω in rad/sec,
for Gen-1 and Gen-2, respectively. These Figures
include the simulation results for the system under
study when equipped with various PSS controllers.
These controllers are conventional PSS, PSS-SFLC
using seven static fuzzy sets with overall rules equal
to 49 rules, PSS-SFLC using five static FS with over-
all rules equal to 25 rules, and the PSS-genetic adap-
tive fuzzy logic controller (GAFLC) using five adap-
tive fuzzy sets with overall rules equal to 25 rules.
It should be noted that the PSS-SFLC using seven
fuzzy sets provides a better dynamic performance
than the PSS-SFLC with five fuzzy sets. However,
the main drawback of the PSS-SFLC using seven FS
is the large computation time for 49 rules every sam-
pling time when compared with the time required
for 25 rules using PSS-FLC with five FS. Meanwhile,
PSS-GAFLC almost coincides with PSS-FLC with
seven FS. Table 1 and Table 2 show the rules for
static and adaptive fuzzy controllers. The dynamic
response, shown in Figure 12, depicts the superio-

a) The angular displacement between the two
machine rotors under a light load

b) Speed change of Generator 1

c) Speed change of Generator 2

Fig. 12: Dynamic response of a synchronous generator
equipped with SFLC-PSS, GAFLC-PSS and CPSS. Gen-
1 is subjected to a step increase/decrease in Tm
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a) The angular displacement between the two
machine rotors under a medium load

b) Speed change of Generator 1

c) Speed change of Generator 2

Fig. 13: Dynamic response of the synchronous generator
equipped with SFLC-PSS, GAFLC-PSS and CPSS. Gen
1 is subjected to a step increase/decrease in Tm

a) The angular displacement between the two
machine rotors under a heavy load

b) Speed change of Generator 1

c) Speed change of Generator 2

Fig. 14: Dynamic response of the synchronous generator
equipped with SFLC-PSS, GAFLC-PSS and CPSS. Gen
1 is subjected to a step increase/decrease in Tm
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rity of GAFLC compared with the other controllers,
except PSS-FLC using seven fuzzy sets. The rising
time, settling time and damping coefficient of the
overall system is better than PSS-using FLC with
static FS with 25 rules. The simulation results also
show that GAFLC has a lower percentage overshoot
than CPSS. Figures 6 to 8 show the normalized mem-
bership function (MFs) before and after training us-
ing the AGAPOP algorithm for the input and output
variables of the fuzzy controller.

B. Medium load conditions

The second case studied is when each generator is
loaded with Pe = 0.65 pu, Qe = 0.45 pu and is
subjected to the same torque disturbance as in case
study A. Figures 13a, b, c show the simulation results
for this case, including the power angle displacement
between the two rotors (δ), in radians, and the speed
deviation, Δω, in rad/sec for Gen 1 and Gen 2, re-
spectively.

C. Heavy load conditions

The third case studied is when each generator is
loaded with Pe = 0.9 pu, Qe = 0.4 pu and is sub-
jected to the same torque disturbance as in case
study A. Figures 14a, b, c show the simulation results
for this case, including the power angle displacement
between the two rotors (δ) in radians, and the speed
deviation, Δω in rad/sec for Gen 1 and Gen 2; re-
spectively.

6 Conclusion
This paper has presented a new fuzzy logic control
power system stabilizer for the supervisory power sys-
tem stabilizers of a two-machine system. The adap-
tive fuzzy set is introduced and tested through a sim-
ulation program. The proposed adaptive fuzzy con-
troller driven by a genetic algorithm improves the set-
tling time and the rise time, and decreases the damp-
ing coefficient of the system under study. The simula-
tion results show the superiority of the adaptive fuzzy
controller, driven by a genetic algorithm, in compari-
son with other controllers. The results also show the
effectiveness of the proposed GAFLC with an adap-
tive fuzzy set scheme as a promising technique. The
specifications of the parameter constraints related to
the input/output reference fuzzy sets are based on
2nd order fuzzy sets. The problem of constrained
nonlinear optimization is solved on the basis of a
genetic algorithm with variable crossover and mu-
tation probability rates. The proposed GAFLC us-
ing AFS also reduced the computational time of the
FLC, where the number of rules is reduced from 49
to 25 rules. In addition, the proposed adaptive FLC

technique driven by a genetic algorithm reduced the
complexity of the fuzzy model.

Appendix A

All parameters and data are given in per-unit values
The machine# 1 parameters are as follows:

Pe = 0.8, Qe = 0.6, Vt = 1.05, Xd = 1.2, X ′
d = 0.19,

Xq = 0.743, H = 4.63, Tdo′ = 7.76, D = 2, ξ = 0.3
The machine#2 parameters are as follows:

Pe = 0.75, Qe = 0.55, Vt = 1.0, Xd = 1.15,
X ′

d = 0.13, Xq = 0.643, H = 3.63, Tdo′ = 7.00,
D = 1.8, ξ = 0.27
Local load data:

Load#1: connected to machine #1 G1 = 0.449,
B1 = 0.262
Load#2: connected to machine #2 G2 = 0.249,
B2 = 0.221
Line data:

RT.L = 0.034, XT.L. = 0.997
AVR data:

Machine#1 and Machine#2: KA1 = 400, KA2 =
370, TA1 = 0.02, TA2 = 0.015

Appendix B

Determining Constraints of Gaussian MFs
The membership function μ(x) of a fuzzy set is fre-
quently approximated by a Gaussian. A Gaussian
shape is formed by two parameters: center c and
width σ, as in formula (B.1):

μG1(x; cj , σj) = e
− (x−cj )

2

2σ2
j (B.1)

The idea of a 2nd order fuzzy set was introduced
by Melikhov to obtain a boundary of Gaussian shape
of the membership function [13]. The 2nd order fuzzy
set of a given MF (x) is the area between d+ and
d−, where d+, and d− are the upper and lower crisp
boundaries of 2nd order fuzzy sets, respectively, as
shown in Figure B.1 The expressions for determining
the crisp boundaries are (B.2), and (B.3):

d+j (xi) = min(1, MFj(xi) + δ) (B.2)

d−j (xi) = max(0, MFj(xi)− δ) (B.3)

Formulas (B.2) and (B.3) are based on the as-
sumptions that the height of the slice of the 2nd order
fuzzy region, bounded by d+ and d−, at point x is
equal to 2δ where δ ∈ [0, 0.367 9] and these bound-
aries are equidistant from MF (x). To obtain the
ranges for the shape forming parameters of theMFs,
it should be assumed that these 2nd order fuzzy
sets are MF search spaces. All MFs with accept-
able parameters should therefore be inside the area.
In the general case, the intervals of acceptable val-
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ues for every MF shape forming parameter (e.g.,
Δc = [c11, c22], and Δσ = [σ11, σ22] for Gaussian)
may be determined by solving formulas (B.1), (B.2)
and (B.3). In practice, this may be done approxi-
mately, considering d+ and d− as soft constraints.
For example, c11 and c22 for the Gaussian may be
found as the maximum root and the minimum root
of the equation d+ = 1, which can easily be calcu-
lated. This equation is based on the assumption that
a fuzzy set represented by the Gaussian must have
a point where it is absolutely true. σ11 and σ22 can
easily be found from the following four equations:

μG1((c+ σ); c, σ) + δ = μG1((c+ σ); c, σ22); (B.4)

μG1((c+ σ); c, σ)− δ = μG1((c+ σ); c, σ11)

μG1((c − σ); c, σ) + δ = μG1((c − σ); c, σ22); (B.5)

μG1((c − σ); c, σ)− δ = μG1((c − σ); c, σ11)

where we choose σ11 as the minimum and σ22 as the
maximum from the roots. These equations are based
on the assumption that the acceptable Gaussian with
[σ11, σ22] should cross the 2nd order fuzzy region slices
at points x = (c±σ). There are two options for find-
ing the constraints of Gaussian parameters. First,
we consider the constraints as hard constraints, and
it follows that the lower and upper bounds of the cen-
ter of the Gaussian membership function will be cho-
sen as cmin, and cmax should be lower than the values
of c11 and c22 to satisfy the search space constraint
conditions of 2nd order fuzzy sets, as shown in Fi-
gure B.2. The lower and upper bounds for the width
of Gaussian membership function σmin and σmax will
be equal to σ11 and σ22, respectively, to satisfy the
search space constraint conditions of 2nd order fuzzy
sets, as shown in Figure B.1. A second option is
to consider these constraints as soft constraints, i.e.,
[cmin, cmax] equal to [c11, c22], and [σmin, σmax] equal
to [σ11, σ22].

Fig. B.1: Upper and lower boundaries of width σ, using
a 2nd order fuzzy set

Fig. B.2: Upper and lower boundaries of center c, using
a 2nd order fuzzy set
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