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Abstract
This paper deals with problems of overhead line motion. The line model is based on a dynamic description of a catenary
curve. The benefits of dynamic modeling in this field are decrypted, and there is an explanation of one of the models
that is used. The dynamic model is derived from a string equation. The main contribution of the model is in 3D
simulation of complex mechanics. The model of an overhead line shaking is generally based on the superposition of
harmonic components, in particular the spatial coordinates. Each individual harmonic component is solved separately
in one step of calculation, and is then combined with the other solutions. The result is a continuous description of the
position of the wire along its length in both the space domain and the time domain. The model thus allows calculations
of uneven effects of forces along the length of an overhead line. The accuracy of the calculation is determined by the
number of harmonics and other parameters that are calculated (e.g. step size, simulation time) The model is actually a
combination of discrete and continuous calculations. Each model function block is described in the form of an equation.
In the case study, ACSR 350/59 wire is analyzed. In this part of our work, an auxiliary model of wind influence was
integrated into the global model.
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1 Introduction

Dynamic models are advantageous when they are
used for evaluating the influence of weather in depen-
dence on position and time. Weather influences in-
clude wind, icing, increased current flow through the
wire, and temperature changes. Due to their com-
plexity, dynamic models are also useful for simulating
various mechanical wave phenomena, e.g. galloping.
The use of models makes analyses of characteristic
oscillations more accurate and easier. The result con-
tains stable and unstable spaces around the operating
state. The system is excited in the unstable region,
leading to wire damage. The model described here
is a continuous3-DOF (degrees of freedom) model.
Wang and Lilien [7] give a simplified modification of
a 2-DOF model in a similar form.

2 Dynamic model of wire

The analysis of dynamic behavior is based on wave
equations (1)–(3). The simulation conditions are de-
picted in Figures 1 and 2 — the situation can be
imagined as a strained wire between two towers. The
model is constrained like a string which can move
between fixed points in horizontal and vertical direc-
tions, and can also rotate. The possibility of rotating
a wire along its axis is important for simulations of an
icy wire, and is used for solving combined tasks with
icing and wind. The situation is depicted in Fig. 2.

Figure 1: Overhead line field between towers.

The dynamics of the movement of a wire is de-
scribed by three partial differential equations. The
first equation describes the motion of the wires in the
vertical direction depending on the longitudinal posi-
tion (variable z) and on time t. The second equation
describes the wire motion in the horizontal direction.
The third equation then adds rotation(torsion). Each
coordinate depends on the longitudinal direction and
the time domain.
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where m is the mass of the wire per 1m length. Pa-
rameters Cy, Cx and Cθ are damping coefficients, T
is the tension of the mechanical stress in the longitu-
dinal direction of the wire, I is the moment of inertia,
GJ is the torsional stress. The right side of the equa-
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Figure 2: Forces and moment of the force affecting
the wire.

tion describes the source of exciting forces, and the
torque forces. Constant L is the total length of the
wire.
The solution of the system of equations depends

strongly on the boundary conditions. In this case,
the wires are fixed at both ends, and thus:

x(z=0, t) = y(z=0, t) = θ(z=0, t) = 0,
x(z=L, t) = y(z=L, t) = θ(z=L, t) = 0.

The solving process for a system of wave equations
(1)–(3) is based on the possibility of separating the
variables (position and time). The variables on right
side are expressed by means of Fourier transforma-
tion. This results in a new set of equations for each
harmonic:
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The resulting position of the wire is obtained by su-
perposingthe solutions of (4)–(6) for each calculated
harmonic.

2.1 Excitation forces
The model of the excitation forces takes into account
the gravitational forces and the forces induced by
wind motion and the consequent drift of the wire.

The gravitational force is a simulated as a uniform
load, and the force induced by the gravitational field
effects is given by:

Fv = −mg,

Figure 3: Wind influence — diagram showing angles
and forces.

where g is the gravitational constant and m is the
weight of the conductor per meter, including ice.

The effect of wind is given by the wind resistance
of the wire. In this case, the wire is shifted and ro-
tated. The constants describing the relationship be-
tween the wire and the air are:

kD = 1
2ρairφcond ,

kM = 1
2ρairφ

2
cond ,

where ρair is air density, and φcond is wire diameter.
Wind acting on the wire results in two orthogonal
components of the forces. The first of these is force
, applied in the direction of the wind motion and
thus the main direction. The second force is the or-
thogonal component, which is orthogonal to the main
direction of the wind. The wire is also influenced by
torque force , which rotates both the wire and the
ice. The position and orientation, including the ac-
tion of the forces, is shown in Fig. 3. The ice element
is also marked in the figure. These component forces
are described by the set of equations (7)–(9).

FD = v2
rkDCD(φ), (7)

FL = v2
rkDCL(φ), (8)

Mω = v2
rkMCM (φ). (9)

Parameter vr is relative wind speed, CD, CL and
CM are the transformation function describing the
distribution of the forces and torque components de-
pending on directional angle φ. These functions have
to be obtained from measurements in an aerodynamic
tunnel.

Relative wind speed is another problem to be
solved. The speed is calculated as a relative value,
because the wire generally moves too. The velocity
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components are as follows:
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where, v0x, v0y are the components of wind velocity,
x and y are the position of the conductor, ri is the
distance between center of gravity of the conductor
and the center of gravity of the ice, θ is the rotation
of the wire to rest position θ0,
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ry.

Angle φ is a necessary component for functions CD,
CL, CM . The value is determined by:

tanα = vrx
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,

ϕ = θ + θ0 − α−
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∂θ

∂t
.

Since forces Fd and FL are described in the system
with the wind direction, and the other equations are
in a stationary system in ground coordinates, it is
necessary to transform the result into coordinates Fv
and Fh:

Fv = FL cosα+ FD sinα−mg,
Fh = −FL sinα+ FD cosα.

3 Case study
The simulations are based on the equations described
in the previous section. ACSR 350/59 wire was cho-
sen for the case study simulation. Functions CD,
CL and CM were taken from the literature [4], be-
cause complex technical measuring equipment would
be needed to measure them (an aerodynamic tunnel
with a tight wire and a controlled climatic environ-
ment). The span length was set as a = 244m and
h ≈ 0m (difference in height between the conductor
support points). The icing of the wire was 0.6 kg/m,
and the tension was assumed to be T = 35600N.

3.1 Basic simulation
The simulation shows the step response of the
new wire under constant wind speedinfluence v0 =
(16, 5.2)m/s condition (the relative angle position of
the icing is assumed to be steady). Only odd harmon-
ics were taken account (in the range 1st to 7th) in the
calculation. The even harmonics are zero functions
in this case.
Figures 4–6 show the wire positions for z = L/2

(the middle of the wire span) in time. Since the wire
is influenced by a constant wind flow v0, and the

Figure 4: x-coordinates in the middle of the wire
span (z = L/2).

Figure 5: y-coordinates in the middle of the wire
span (z = L/2).

Figure 6: Rotation of the wire θ in the middle of
the wire span (z = L/2).
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Figure 7: Schematic representation of the move-
ment of the wire due to the influence of wind.

system is in a stable state, the position of the wire
results in a stable equilibrium. The situation is shown
schematically in Figure 6, where “State 0” is steady
equilibrium for the state without wind and “State 1”
is a stable position with the influence of a constant
wind v0. Coordinates y contain gravitational forces
causing an offset.

To determine the position of each coordinate, it
is necessary to evaluate some harmonics (4)–(6) for
each component. Sub-harmonics results are shown in
Figures 8 to 10. Since the own load of the conductor
is constant, and other parameters are also homoge-
neous (including icing), the solutions do not contain
even harmonics. This simplifies the calculation, and
even harmonics do not have to be taken into account.
In the case of a non-constant load, this simplifying
assumption does not generally apply.

3.2 Effect of icing position
The following simulation is done under the same con-
ditions as above. The only change is in the variation
of the icing position angle (see Fig. 3). Steady state
results are presented in Tab. 1. These values show
that icing formed under windy conditions leads to
results that are far from homogeneous.

3.3 Influence of harmonics calculated
on the basis of simulation results

The influence of harmonic components, taking into
account the calculated steady state, is shown in Table
2. Final number of harmonics used in the simulation

θ0 x y θ
(z = L/2) (z = L/2) (z = L/2)

(in °) (in m) (in m) (in °)

18 −1.199 −3.819 0.007

0 −1.355 −3.891 22.074

−18 −1.619 −3.677 20.375

−36 −1.877 −3.250 −15.042

−54 −2.079 −2.895 −78.379

Table 1: Steady state values for various angle.

Harmonic x y θ
order (z = L/2) (z = L/2) (z = L/2)

(in m) (in m) (in °)

1 -1.68764 -3.77506 0.00607

3 -1.62494 -3.63551 0.00585

5 -1.63849 -3.66566 0.00589

7 -1.63355 -3.65467 0.00588

9 -1.63587 -3.65984 0.00588

Table 2: Steady state value for various harmonics
taken into account.

is determined by testing the convergence of the result.
It is not sufficient only to decompose the resulting
values in the steady state. A simple decomposition
cannot be used because the system is nonlinear.
The values show that the effect of the harmonics

on the results decreases as the order of the harmon-
ics rises. The effect of 9th and higher harmonics is
therefore low, and their added value is negligible in
comparison with the complexity of the calculation.

4 Conclusion
This paper describes a 3-DOF model for simulating
the dynamic behavior of a stretched wire. The main
external influences on the model have been described.
The effect of wind on a conductor with icing has also
been described.
A case study has shown a wire with constant ic-

ing and steady wind. In the case study, the simula-
tions show the position of the middle of the span for
all 3 coordinates. In addition to that, the behavior
of each harmonic is calculated. The courses of dis-
placements x, y, θ depending on coordinate z can be
viewed for other locations, but it has no real appli-
cation. This part of our work also investigated what
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Figure 8: The 1st harmonic amplitudes of a position in time.

Figure 9: The 3rd harmonic amplitudes of a position in time.

Figure 10: The 5th harmonic amplitudes of a position in time.
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happens when a frozen wire turns. The simulation
shows that a wire with significant icing placed in one
direction (a shift of the center of gravity from the
center of the wire) is very sensitive to the wind pa-
rameters (Tab. 1). In real situations, icing is placed
asymmetrically. In this case, it is possible to choose
a characteristic direction and use an average value.
For a more accurate result, it would be necessary to
describe the distribution function for the icing, in-
cluding the directional angle and the shift of gravity
along the wire length z.

The study also calculated the influence of the num-
ber of equations that was solved, where a set of
3 equations represents one harmonic. The simulation
and the model results show that the even harmonics
do not affect the solution for uniform distribution of
forces and weight. In addition, the influence of the
9th and high order harmonics is negligible for the sim-
ulation in comparison with the increasing complexity
of the calculation.
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