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Abstract

In recent years, Unmanned Aerial Vehicles (UAVs) have attracted much attention both in the research field and in the
field of commercial deployment. Researchers recently started to study problems and opportunities connected with the
usage, deployment and operation of teams of multiple autonomous UAVs. These multi-UAV scenarios are by their nature
well suited to be modelled and simulated as multi-agent systems.

In this paper we present solutions to the problems that we had to deal with in the process of integrating two
hardware UAVs into an existing multi-agent simulation system with additional virtual UAVs, resulting in a mixed reality
system where hardware UAVs and virtual UAVs can co-exist, coordinate their flight and cooperate on common tasks.
Hardware UAVs are capable of on-board planning and reasoning, and can cooperate and coordinate their movement with

one another, and also with virtual UAVs.
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1 Introduction

The use of UAVs is growing nowadays thanks to the
low cost of their deploying and maintaining them,
and the possibility to operating them in areas inac-
cessible or dangerous for human pilots. To manage
more sophisticated tasks such as area surveillance
and monitoring or multiple target tracking, teams
of multiple UAVs should be deployed. This requires
more complex control, coordination and cooperation
mechanisms. These mechanisms have already been
studied and developed for virtual UAVs as a part of
multi-agent systems, e.g. in the AgentFly system [8]
or MAS, proposed by Baxter and Horn in [1] which
would be very well suited for application in real hard-
ware UAVs.

A further significant challenge in working with hard-
ware air vehicles is that the design/test cycle is con-
siderably longer than for ground robots or virtual
entities. Flight experiments involve a greater level
of risk, since even minor errors can lead to serious
crashes. For this reason mixed reality simulations,
which allow integration of real hardware UAVs and
simulated virtual UAVs to co-exist in one environ-
ment, are helpful and necessary in the development
process.

The principles of multi-agent systems have been
used in [2], [3] and [6] to issue commands to hard-
ware UAVs. In these works, however, central planning
mechanisms are used, and the UAVs only follow pre-
computed plans.

Figure 1: AgentFly multi-agent system.

Biirkle et al. [4] presented the deployment of con-
trol mechanisms for teams of hardware VTOL micro
UAVs. These UAV teams are capable of on-board
planning and some cooperation on mutual tasks, but
they do not coordinate their flight in terms of collision
avoidance. The system also does not allow the co-
existence of hardware UAVs together with simulated
UAVs.

We integrated two hardware fixed wing UAVs into
the AgentFly multi-agent system [8], which is used
for simulating UAVs and air traffic, allows complex
coordination and cooperation of agents, and provides
collision avoidance mechanisms. We modified the sys-
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Figure 2: Design of a simulated virtual UAV.

tem to allow both hardware and virtual UAVs to act
and interfere in a common mixed reality environment,
and we equipped the hardware UAVs with a Gum-
stix computer to enable on-board planning, reasoning
and communication with other hardware or software
UAVs.

This paper is organized as follows. First, we will
briefly describe the AgentFly system in Section 2 and
UAVs and their computational and communication
equipment in Section 3. Section 4 shows the modifi-
cations done to the AgentFly system and hardware
equipment for deploying the UAVs, and in Section 5
we describe the results of field experiments. Section 6
concludes the paper.

2 AgentFly Multi-Agent
System

AgentFly is a Java-based multi-agent system designed
for simulation of air traffic and UAV missions (see
Figure 1). It is built on top of the A-globe multi-agent
platform [7], and it provides the simulated entities
with a communication framework, trajectory planning,
and collision avoidance and cooperation mechanisms.

Each simulated aircraft in the AgentFly system is
composed of two software agents — the Pilot agent
and the Plane agent. Pilot agent is responsible for
the UAV’s reasoning — it calls the trajectory planner
and handles the communication with other UAVs for
the purposes of cooperation and collision prevention.
Plane agent provides Pilot agent with an interface for
high-level plane control, and executes the flight plans.
It also simulates the aircraft’s on-board instruments,
e.g. radar, GPS and clock.

The system provides simulated aircraft with mech-
anisms for peer-to-peer collision avoidance — either
cooperative mechanism, where the UAVs exchange
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Figure 3: Unicorn UAV by Procerus Technologies.

Figure 4: Gumstix Overo Fire on-board computer .

their flight plans and negotiate about avoidance ma-
noeuvres, or non-cooperative mechanism, where the
UAVs cannot exchange (e.g. because of incompatible
protocols) or do not want to exchange their plans (for
example hostile airplanes) and the collision situation
is solved by flight trajectory prediction.

The flight plans consist of a sequence of flight ma-
noeuvres — straight flight, left /right turn, up/down
turn. They represent so called Dubins curves [5],
which are based on the fact that any two positions
(points with directions) in space can be connected by a
sequence of a turn of a given radius, a straight segment
and another turn. Each manoeuvre is represented by
the starting point, turn angle or acceleration, speed
and duration.

During the transition process from software simula-
tion to mixed-reality we replaced two of these virtual
aircraft with hardware commercial off-the-shelf fixed
wing UAVs by Procerus Technologies.

3 Hardware UAV Platform

We selected the Procerus UAV (Figure 3) because of
its relatively low cost, built-in cameras and sensors,
ease of hardware integration and easy repairs, and
the included Kestrel autopilot. The Kestrel autopilot
is capable of waypoint navigation, thus removing the
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necessity for low level UAV control, and it provides
telemetry and GPS info about the aircraft via an RF
modem.

To provide computational capacity for on-board
planning and communication, we equipped the UAV
with a Gumstix Overo Fire computer on module
(COM) (Figure 4). This computer is based on ARM
Cortex-A8 architecture with 512 MB RAM running
at 720 MHz with Linux OS and Java Embedded to
enable running of the modified AgentFly multi-agent
system.

Figure 5 shows the block design of the deployed
hardware UAV. The Kestrel autopilot is connected to
the sensors and actuators to provide low level UAV
control. By the connected 869 MHz Microhard mo-
dem, the autopilot distributes telemetry and GPS
info to the ground station and receives control com-
mands in cases when manual control is required or
when the autonomous on-board planning and control
algorithms fail. The autopilot is also connected to
the Gumstix Overo COM by RS-232 line. By this
line it distributes the telemetry and GPS data to the
on-board planner and receives standard control com-
mands — mainly a sequence of waypoints in return.
Communication with other hardware or virtual air-
craft is carried out by an additional 2.4 GHz XBee
modem.

The two modems have their counterparts on the
ground station PC to pass the telemetry and commu-
nication to the simulation, and vice versa.

4 Modifications made to the
multi-agent system

The software integration of the hardware UAVs into
the multi-agent system is depicted in Figure 6. It
can be seen that the hardware UAV entity consists
of an on-board part responsible for planning, flight
execution and other reasoning, and a part located on
the ground station PC responsible for visualization
and exchange of position and telemetry information
(block in the figure denoted as ‘radar’) between the
real and virtual entities.
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Figure 6: Design of modificated MAS for mixed
hardware and virtual UAV simulations.

In order to integrate of the hardware UAV, some
parts of the simulation and planning software had to
be modified:

Waypoint navigation of the Kestrel autopilot was
not compatible with the AgentFly’s manoeuvre-
like flight plan structure.

Wind in the real environment significantly influ-
enced the precision of plan execution.

Position uncertainty caused by errors of sensors
and actuators or environmental effects.

Unreliable communication and low bandwidths
of the RF modems caused problems in the colli-
sion avoidance and cooperative mechanisms.

The simulation time needed to be synchronized,
otherwise it caused problems in cooperative col-
lision avoidance negotiations.

We will now describe the necessary changes that had
to be applied to deal with these problems.

4.1 Waypoint Navigation

As was stated above, the Kestrel autopilot provides
the operator with waypoint navigation capability. The
waypoints are uploaded as GPS coordinates, so we
had to sample the UAV’s plan, which is represented
as a list of flight manoeuvres. The manoeuvres are
sampled according to the acceleration or turn angle
— the more rapid the change in speed or angle, the
more dense is the sampling (see Figure 7).
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Figure 7: Flight manoeuvre sampling. The larger
the turn angle, more dense the sampling is.

Another problem is that the planner works with
Cartesian coordinates. The sample waypoints there-
fore have to be transformed to GPS coordinates using
linearisation of the world at the point specified by
the position of the ground station. This position rep-
resents the origin of a Cartesian coordinate system
with the x-axis pointing to the east, the y-axis to
the north and the z-axis upward (see Figure 8). This
linearisation causes errors that are less than 10cm
in measurements of distances, and less than 8 m in
measurements of altitudes at a distance of 10 km from
the origin and 500 m higher.

4.2 Planning in Wind

Wind has a significant effect on the precision of UAV
plan execution. Apart from gusts of wind that drift
the aircraft and cause position uncertainty, see the
next section, stable winds especially influence the
minimal turn radius of the UAV — one of the main
parameters of the trajectory planner. An aircraft
flying against the wind is capable of turning with a
much smaller turn radius than an aircraft flying with
the wind. In these conditions, the original planner
that was based on planning with Dubins curves (i.e.
straight segments and turns with constant a radius)
created trajectories could not be followed in presence
of wind.

We modified the planner to use trochoidal curves.
The trajectories can then be constructed as Dubins
curves in a coordinate system that moves in the same
direction and at the same speed as the wind (see
Figure 9), and can be followed much more precisely,
even in strong wind.

4.3 Position Uncertainty

Because of errors of the sensors and actuators and
effects of the environment, e.g. gusts of wind, the
aircraft’s position estimation is not and cannot be
precise. For effective coordination and control of
UAVs, this uncertainty must be modelled and the
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Figure 8: Linearisation of the coordinate system.
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Figure 9: Effect of wind on the flight trajectory.

planning algorithms must take the uncertainty into
account.

We distinguish two types of errors — Ap for time-
related errors and Ap for distance-related errors (see
Figure 10). The distance-related error is the deviation
of the UAV from the planned spatial trajectory. It
can be caused by sudden wind gusts, wind changes,
high airspeeds or imprecise autopilot control when
the aircraft is unable to follow the trajectory correctly.
The time-related error is then the deviation of the
UAV from the time plan. This is caused by impre-
cise autopilot velocity control, by accumulated small
delays that emerge when the autopilot repairs small
spatial deviations from the plan, or by high wind
speeds when it is difficult to keep the desired velocity
of the aircraft.

To handle these uncertainties, we use the so-called
safety zone around the UAV. Generally, the worse
the flight plan execution performance, the bigger the
safety zone needs to be in order to keep the plane far
apart from obstacles or other planes.

When specifying the dimensions of the safety zone
we distinguish two different safety ranges — safety
time range s, and safety distance range sp (see
Figure 11). The safety time range is given by the
maximum allowed time-related error Ar, and the
safety distance range is given by the maximum al-
lowed distance-related error Ap. When the UAV gets
outside any of these ranges, trajectory replanning is
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Figure 10: Two possible error types in plan following-
Ar for time-related error, and A p for distance-related
error.
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Figure 11: Two different safety ranges — safety time
range s, and safety distance range sp.

scheduled. The safety time range is bigger than the
safety distance range, because it is generally more
difficult for the aircraft to keep up with the plan in
the time domain.

The safety zone is used during the planning proce-
dure so that it is wrapped along the planned trajec-
tory and it cannot cross any obstacle, no-flight zone
or other planned trajectory in time and space.

4.4 Unreliable communication

Communication is one of the most crucial features
of any multi-agent system. In the AgentFly system,
all collision avoidance and cooperative negotiations,
e.g. plan and position exchange and coordination
commands, are conducted by message exchange. In a
simulation the messages are transferred by the reliable
TCP/IP protocol, but in a real environment UAVs use
RF modems with limited bandwidth, with possible
interference to their signal from other RF devices, and
with significant signal attenuation with distance.

The largest portion of the communication band-
width is used by plans exchange during cooperative
collision avoidance. Figure 13 shows the required
bandwidth for worst case collision avoidance negoti-
ation in superconflict scenarios, where all the UAVs
are flying against each other with one collision point
in the middle of them (see Figure 12). We presume
the initial distance of the UAVs to be 1.5km, with

Figure 12: Superconflict collision avoidance scenario.
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Figure 13: Required bandwidth for collision avoid-
ance negotiation in superconflict.

the requirement that the conflict is to be resolved 10s
before the collision point.

Apart from plan exchange, additional bandwidth
required is for manual safety control, telemetry broad-
casts and communication management control. This
needs 10-30 kbps of additional bandwidth. Commer-
cial modems that are capable of communication at a
distance of at least 1.5 km have maximum RF band-
width around 115kbps, which with the additional
and safety bandwidth is not enough to handle even
4 UAV superconflict scenarios. Moreover, operating
the modems at full speed requires a significant por-
tion of CPU time. For that reason we decided to
use two independent RF modems operated by Kesterl
autopilot and Gumstix COM on-board CPU units, as
shown in Figure 5.

4.5 Simulation time

Collision avoidance algorithms and other cooperation
and coordination mechanisms need to have synchro-
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Figure 14: The effects of planning with (a) Dubins
curves and (b) trochoidal curves.

nized time to work properly. There are two ways to
synchronize simulation times.

Because all autopilot modules and also the ground
station PC are connected to GPS modules, we can
synchronize the clocks from the time information con-
tained in GPS updates. This method can give very
precise time information, but we have found out that
Kestrel autopilot sometimes provides wrong time in-
formation in GPS updates that need to be recognized
and taken out from the measurements.

The second way is to pass the ground station’s
simulation time during a registration process of the
hardware UAVs to the system and then start to mea-
sure time from that moment. In this method there
is a problem in the information transfer time — it
can take up to one second to transfer the registra-
tion data along with the simulation time, and this
can have a significant effect on time synchronization.
However we decided to use this approach because the
synchronization error is smaller than the time errors
from the GPS updates.

5 Experiments

We performed several field tests to check and verify
the modifications described above.

First, we compared the plan execution precision in
cases with plans found by the original planning algo-
rithm and with plans found by our modified algorithm
for planning in wind. The tests were conducted with
approximately 5m/s wind, the UAV’s airspeed was
15m/s, and the scenario consisted of three waypoints
placed as shown in Figure 14.

The blue line in Figure 14 is the ideal planned
trajectory that starts at the first waypoint (WP1),
then proceeds via WP2 and WP3 and ends again at
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WP1. The green line is the real recorded trajectory
of the UAV, and the black arrows emphasize the
different turn radii in individual cases. It can be seen
that the trajectories created with Dubins curves with
a constant minimal turn radius could not be followed
at some points. On the other hand, the trajectories
created with trochoidal curves that were adapted to
the wind strength and direction were followed much
more precisely.

Another experiment that we performed was a mixed
reality collision avoidance test. We prepared a sce-
nario with one hardware UAV and one virtual UAV
flying against each other. The purpose of this exper-
iment was to test the functionality of the collision
avoidance mechanism between the real and virtual
aircraft, and also to test the sufficiency of the RF
bandwidth required for the communication. The ex-
periment was successful: the UAVs needed less than
10s to solve the collision situation, which with air-
speeds of 15m/s corresponds to 300 m distance flown
from the beginning of the negotiation.

In future we would like to perform experiments
with two hardware UAVs, later adding one and more
virtual UAVs in order to study the scalability of the
problem.

6 Conclusion

In this paper we have presented problems and solu-
tions connected with integrating hardware fixed wing
UAVs into an existing multi-agent system for UAV
simulation. We are now able to verify the functionality
of the collision avoidance and cooperative mechanisms
in a real environment, and also to find possible bot-
tlenecks and limitations, e.g. the maximum available
RF bandwidths for communication, and the limited
computational capacity of the on-board computers.

Our work is a first step toward full deployment of
the AgentFly system on real hardware UAVs that
could operate independently in coordinated teams
during tactical missions.

In our future work, we would like to extend the
tactical cooperation possibilities of UAVs and also to
deploy autonomous VTOL quadcopters next to the
fixed wings and provide them with mechanisms for
mutual flight coordination and cooperation.
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