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Abstract

This paper presents some of the main numerical results obtained while simulating the wind flow over a shelter covering a
coal storage. The aim of this numerical study was to evaluate the change in flow patterns caused by adding an impermeable
wall to the originally open shelter. The numerical simulations of selected two-dimensional cases were performed using
an open-source CFD code. The flow model is based on Reynolds-Averaged Navier-Stokes Equations solved using a
finite-volume method on a structured grid. The turbulence is parametrized using the standard k — ¢ model. Two shelter
wall configuration variants are evaluated, and are compared with the original open shelter setup.
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1 Introduction

This study is motivated by the needs of industrial
coal processing. Coal often has to be transported,
handled and stored in close proximity to inhabited
areas. The coal dust produced during these processes
is a major pollutant that has a serious negative im-
pact on human health. Air-drifted coal dust is also a
major hazard due to its explosivity at high concentra-
tions. Coal is often handled in the open air, covered
only by simple open shelters, consisting of just a roof
without any walls. This protects the coal and the pro-
cessing technology from major weather factors, such
as rain, snow and direct sunshine. It also maintains
low dust concentrations inside these shelters, which
greatly reduces the risk of an explosion. This open
configuration has many advantages, including struc-
tural simplicity and therefore low cost. In order to
reduce pollution (by dust or noise) in surrounding
areas, it was decided to build a wall that will at least
partially enclose the building and prevent the escape
of pollution. The aim of this study is to provide some
information about how the newly-built wall will affect
the flow, and about its possible impact on pollution
dispersion.

2 Mathematical Model

Typical atmospheric flows are incompressible and tur-
bulent. Flows of this type have been modeled e.g.
in our previous works [4, 7, 8]. The effect of obsta-
cles on pollution dispersion in the atmosphere was
also studied in [5] or [6]. The influence of thermal
stratification was included in [1, 2, 3], where we have
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also demonstrated the influence of various numerical
discretization techniques.

Similar problems of atmospheric flows over various
obstacles are often studied in the available literature.
Most studies however only consider smooth, hill-like
obstacles. This is e.g. the case of the study of the
wake flows behind 2D polynomial hills in [9], and the
flow over a 2D sinusoidal topography with various
hill slopes in [18]. More recent papers [17] and [21]
include some comparisons of experimental and numer-
ical data. The case of atmospheric flow over multiple
2D hills is investigated experimentally and compared
to CFD solutions in [12]. The case of non-smooth ob-
stacles was investigated e.g. in [22, 27, 30, 31, 32]. A
comparison between experimental data and numerical
simulations can be found in [25]. Coal dust and sand
dispersion in the presence of porous fences has been
investigated e.g. in [23, 24, 33, 26].

2.1 Flow Model

The model chosen for the study presented here is based
on Reynolds-Averaged Navier-Stokes equations supple-
mented by the standard k — e turbulence closure. The
governing system consists of the conservation of mass
and linear momentum written for Reynolds-Averaged
mean quantities, i.e. velocity v = col(u,v,w) and
pressure p. Density p is considered constant in this
case. Volume forces (gravity, Coriolis, etc.) are ne-
glected.

The resulting system can be written in conservative
form as:
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The turbulent diffusion K = p + pp is equal to the
sum of molecular (laminar) viscosity p and turbu-
lent (eddy) viscosity pur. The turbulent viscosity is
evaluated using a suitable turbulence model.

2.2 Turbulence Model

The standard k — € model was chosen to account for
the effects of turbulence. The governing equations for
turbulent kinetic energy k and rate of dissipation e
can be written in the following form:
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The production of turbulent kinetic energy is com-
puted from the strain rate tensor S = (Vv +V7Tv)/2
as

P, = urS? where S=+v2S:8 (5)
The turbulent viscosity is then calculated using

k2
HT = CMP?- (6)

The model coefficients are C,, = 0.09, C; = 1.44,
Cy=1.92, 04, = 1.0, 0. = 1.3.

3 Computational Setup

The computational setup is based on a 2D rectan-
gular domain. The lower boundary is formed by an
impermeable, no-slip wall. The wind flow enters the
domain from the left side, parallel to the wall. Three
different shelter wall variants are tested:

V1 — The wall is placed on the downwind side of
the shelter. It has small gap in the upper part
close to the roof.

V2 — Similar to variant V1, but the gap in the upper
part is closed. The shelter is fully closed on the
downwind side.

V3 — Similar to variant V2, but the wall has a small
opening close to the ground.

>
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Figure 1: Sketch of the geometry

A sketch of the geometrical configuration for all three
variants can be found in Figure 1. The domain size is
80 x 25 meters, with the shelter approximately 10 x 4
meters in size.

4 Numerical Results

The numerical simulations were performed using the
OpenFOAM open source CFD software package. The
solver is based on finite-volume discretization on struc-
tured, hexahedral cells. The space discretization is
central, second order, cell centered. Pressure-velocity
coupling is carried out using the PISO algorithm (Pres-
sure Implicit with Splitting of Operators). The time
integration is implicit, performed using a segregated
linear solver by preconditioned bi-conjugate gradient
method. The preconditioner is based on diagonal
incomplete LU decomposition. The code uses MPI
for parallelization.

The wind comes from the left side at (uniform)
speed 10m/s. The flow patterns for all three vari-
ants V1, V2 and V3 are shown in Figures 2—4. It
is immediately evident the the variant V1 (with the
upper gap) generates a massive recirculation zone on
the downwind side of the shelter. The air passing
through the shelter leaves the shelter at the height of
the roof, which will contribute largely to spreading
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the dust generated inside the shelter over very large
distances. Variant V2 is not acceptable, because it
does not allow the coal dust to be washed out of
the shelter by the wind. This can lead to high dust
concentrations inside the shelter, and thus increases
the risk of an explosion. This variant was included
only for comparison. The best variant seems to be
V3, where the ventilation gap has been placed close
to the ground. This keep all the dust close to the
ground, where it can easily sediment. Details of the
flow patterns in the proximity of the shelter are shown
in Figure 5.

The horizontal velocity fields! shown in Figures 6-8
again confirm that the worst variant is V1, where
the flow speeds up significantly. This spreads the
pollution over much larger distances. The structural
loads for each of the shelter configurations can be
estimated from the pressure fields shown in Figures 9—
11. The force acting on various parts of the shelter can
be evaluated from the pressure differences between
the inner and outer parts of the building (wall, roof,
etc.). The comparison of the pressure fields also seems
to indicate that the loads on the shelter are much
smaller for variant V3.

The pollution dispersion is strongly affected by the
turbulence. The turbulent diffusion characteristics
can be estimated using the turbulent kinetic energy
shown in Figures 12-14. Shelter variant V3 generates
much less turbulence than variant V1. This can con-
tribute to faster dust sedimentation and consequently
to lower pollution in more distant areas.

5 Conclusions & Remarks

The numerical simulations have clearly shown that
there are big differences between the flow-fields for
the three configurations. On the basis of the numer-
ical results, variant V3 seems to be the best choice.
It maintains some flow passing through the shelter,
reducing high dust concentrations, but it keeps the
flow (carrying the dust) close to the ground. This
type of flow helps heavy coal dust particles to drop
out of the flow and sediment closer to the shelter,
reducing the environmental pollution in more distant
areas, which may be inhabited.
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