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In this paper, we will first summarize known results concerning continued fractions.

Then we will limit our consideration to continued fractions of quadratic numbers. The second author
describes periods and sometimes the precise form of continued fractions of v/ N, where N is a natural
number. In cases where we have been able to find such results in the literature, we recall the original

authors, however many results seem to be new.
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1. INTRODUCTION

Continued fractions have a long history behind them

— their origin may go back to the age of Euclid’s algo-
rithm for the greatest common divisor, or even earlier.
However, they are experiencing a revival nowadays,
thanks to their applications in high-speed and high-
accuracy computer arithmetics. Some of the advan-
tages of continued fractions in computer arithmetics
are: faster division and multiplication than with po-
sitional number representations, fast and precise eval-
uation of trigonometric, logarithmic and other func-
tions, precise representation of transcendental num-
bers, no roundoff or truncation errors (6], Kahan’s
method in [3}, p. 179]).

2. CONTINUED FRACTIONS

In this section we summarize some basic definitions
and results that can be found in any number theory
course [I1, 2, 4]. We use | x| to denote the integer part
of a real number z.

Definition 2.1. The continued fraction (expansion)
of a real number x is the sequence of integers (a, )nen
obtained by the following algorithm

L - ifz, ¢ Z,

o= an= |2l Tnnr {0 otherwise.

Note that ag € Z and a,, € N. The algorithm
producing the continued fraction is closely related to
the Euclidean algorithm for computing the greatest
common divisor of two integers. It is thus readily seen
that if the number z is rational, then the algorithm
eventually produces zeroes, i.e. there exists N € N
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such that a, = 0 for all n > N, thus

1
x=ag+ . (D

ay +

(12+

-
aN-1+ —
an
We write z = [ag, . . ., an]. On the other hand, if we
want to find an expression of the form (1)) with ag € Z
and a, € N\ {0} otherwise, then there are exactly

two of them — the continued fraction [ag, ..., an] and
1
T =ag+ 1
ar + 1
az + 3 1
+ -

an—1+ 1

(ay —1) + 1

If the number z is irrational, then the sequence of
the so-called convergents

1 1
ag, ag+—, ..., 2
0, G0 o ap+ 1 (2)
a1+

ap—1+ —
n

converges to x for n — oo. On the other hand, every
sequence of rational numbers of the form with
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ap € Z and a,, € N\ {0} converges to an irrational
number (and for every irrational number there is only
one such sequence — the sequence of convergents).
We write z = [ag, ..., an,...].

The convergents of the continued fraction are
known to represent irrational numbers better than
any other fractions.

Theorem 2.2 (Lagrange). Let z € R\Q and let g—:
be its n-th convergent (where p,, and ¢, are coprime)
and let % with p,q € Z be distinct from z—z and such
that 0 < g < q,. Then

_P
q

Tr — —

’ Pn
dn

<’x

It is also known how well continued fractions ap-
proximate irrational numbers.

Theorem 2.3. Let x € R\ Q and let 2> be its n-
th convergent (where p,, and g, are coprime). Then
either

1

< _
22

Tr— —

‘ Pn
an

1
—~ p”“’ < e
2qn+1

or ’x
qn+1

And in a certain way, only continued fractions get
very close to irrational numbers.

Theorem 2.4 (Legendre). Let x € R\ Q and let

% with p,q € Z satisfy |z — §| < ﬁ. Then % is
a convergent of .

2.1. CONTINUED FRACTIONS AND
CONTINUANTS

The convergents of continued fractions are closely
related to the so-called continuants K, (x1,...,x,).

Theorem 2.5. Let ag € R, a; > 0, i € N. Then it
holds

. 7an)
) an)

1 _ Kpt1(ao,a1,-.
1 Kn(al,..
1

L
an

ao +

)

a1 +

where the polynomial K,(x1,...,2x,) Is given by
the recurrence relation K_1 = 0, Kqg = 1 and for
n > 1 by Ky(z1,...,2,) = Kn_o(x1,...,2p-2) +
:CTLK’IL—l(xly .o ;zn—l)-

Corollary 2.6. Let [ag,...,an, ..
fraction of an irrational number x.
convergent ’q)—" satisfies

.] be the continued
Then its n-th

Pn = n+1(a0»---;an); qn:Kn(ala-“yan)-

Theorem 2.7. For everyn € N and aq, ..
we have

an €ER,

Kn(ah .. ';an) = Kn(an; H .,(11).

2.2. CONTINUED FRACTIONS OF QUADRATIC
NUMBERS

We will call a quadratic irrational an irrational root
a of a quadratic equation

Az’ + Bx+C =0,

where A, B,C € Z. The second root of the equation
will be denoted o and called the (algebraic) conjugate
of a.

In order to state the theorem describing con-
tinued fractions of quadratic irrationals, we need

to recall that a continued fraction [ag,...,an,...]
is called eventually periodic if [ag,...,an,...] =
[ag, ... ,ax—1,aK,.--,a7] starts with a preperiod
ao, .- .,ar_1 and then a period ag,...,as is repeated

an infinite number of times. It is called purely periodic
if [agy ..., an,...| = [a@0,---,aqg], i.e., if the preperiod
is empty.

Theorem 2.8 (Lagrange). Let a« € R\ Q. The
continued fraction of « is eventually periodic if and
only if a is a quadratic irrational.

Theorem 2.9 (Galois). Let o be a quadratic ir-
rational and o' its conjugate. The continued frac-
tion of « is purely periodic if and only if « > 1 and
o € (—1,0).

S

Example 2.10. Let a = 1+2 , i.e., the so-called

Golden ratio, then it is the root of 2?2 —x —1 = 0 and
o = 1_7\/5 € (—1,0). The continued fraction of « is
indeed purely periodic since

consequently « = [1].

In the sequel when we restrict our consideration to
square roots of natural numbers, we will make use of
the following lemma from [4].

Lemma 2.11. Let a be a quadratic irrational and
o’ its conjugate. If o has a purely periodic continued

fraction [ag, ai, .., an|, then ;—,1 = [an, .-, a1, ag)-

3. CONTINUED FRACTIONS OF v N

Let us consider N € N\ {0}. If N = k? for some
k € N, then v'N = k and the continued fraction is
VN = [k]. Therefore, we limit our considerations
to N € N\ {0} which is not a square in the sequel.
Then there exists a unique n € N\ {0} and a unique
j€{1,...,2n} such that N = n? + j.

The proofs of the two following theorems can be
found in [4] page 15. However we repeat them here
since they follow almost immediately from the previ-
ous statements and they give an insight into the form
of continued fractions of quadratic numbers.
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Theorem 3.1. For every n € N\ {0} and every
j € {1,...,2n} the continued fraction of \/n? + j
is of the form [n,ay,...,a,,2n], where aj...a, is
a palindrome.

Proof. Denote @ = n + /n?+j. Then « is
a quadratic irrational greater than 1 and o/ = n —
vn?+j € (—1,0). Therefore o has by Theorem
a purely periodic continued fraction, i.e., there exist
ai,...,ar € Nsuch that o = [2n,a1,...,a,]. It is
thus evident that /n? 4+ j = [n, a1, ..., ar, 2n]. It re-
mains to prove that ay ...a, is a palindrome. Accord-
ing to Lemmam the number (’71 has its continued

fraction equal to [a,,...,a1,2n]. We obtain thus
— 1 1
n“+j=n + e e n —+ =y
n—y/n2+j o
=[n,ar,...,a1,2n].

Since the continued fraction of irrational numbers is
unique and we have

Vn2+ | = [naala"'vaT72n]: [nva’r’v"'?alv2n]a

it follows that a; = a,, as = a,_1 etc. Consequently,
aj ...a, is a palindrome. u

Theorem 3.2. The continued fraction of the form
[n,a1,...,ar,2n], whereay ... a, is a palindrome, cor-

responds to v N for a rational number N.

Proof. Denote by x the number whose continued frac-

tion equals [n,aq,...,ar,2n], i.e.,
1
r=n-+ 1
T 1
ot :
ar 2n+ (x —n)

Hence by Theorem [2.5]

K.(as,...,ar,x+n)
rT—n=
K.i1(a1,...,ar,x+n)
_ KT_Q(CLQ, .. .,ar_l) —+ (SC —+ n)KT_l(ag, e ,CLT)
K._1(a1,-.-,ar—1) + (z+n)K(a1,...,a.)

By Theorem 2.7 and since a; ... a, is a palindrome,
we have K,_i(ai,...,a,—1) = K,_1(as,...,a.).
Consequently, we obtain

_ 2 2nKr_1(ai,...,ar—1)+Kr_2(az,...,ar_1)
L= n®+ K,(ai,..., ar) ’

where under the square root, there is certainly a ra-
tional number since by their definition, continuants
with integer variables are integers. u

In the sequel, let us study the length of the period
and the form of the continued fraction of VN =
\/n? 4+ j in dependence on n and j, where n € N\
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{0} and j € {1,...,2n}. We will prove only some
observations since the proofs are quite technical and
space-demanding. The rest of the proofs may be
found in [5]. In Table [1} we have highlighted all
classes of n and j for which their continued fractions
of VN = \/n2? + j have been described.

Observation 3.3. The continued fraction of V' N has
period of length 1 if and only if N = n? + 1. It holds
then /N = [n,2n].

Proof. This observation has already been made in [7].
(<)

\/n2—|—1—n_

n?+1=n+ 1
+ ! + !
=N —_— =N s
n?+1+n vni+1l-—n

2
n+ 1

hence v'N = [n, 2n).
(=) : If the length of the period equals 1, then by

Theoremwe have VN = [n, 2n].
vn?+j=n+(V/n?>+j—n)
1
= + R
" 2n++/n?+j—n

hence we have

Vn2+j—n=
J _

n?+j+n n?+j+n
]:1 |

1
n4n2+j—n
1

Observation 3.4. The continued fraction of V' N has
period of length 2 if and only if 27" is an integer. It

holds then v/N = [n, 22, 2n).

775

Proof. (<):

vni+ji=n+(/n?+j—n)
__J
n2+j+n
1

2n+ Vr2+j—n

:n+

:n+

J J

thus VN = [n, 27,”,271].
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12 3 4 5 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

B
=

W0~ ;OO kW

- -
= O
=
[= ]

[
=)}

13
14
15 1240 s 12
16
17 10 11 4
18 28 4
19 6 6 5
20 10 20
21 | 17]J8 10 10 10 34
22 2208 o 10l 16 10 6
23 1020 7 8 8391610
24 10

25 41823
26 24 10 14
27 1203 814
28 24 20
29 16 10
30 42 24

)
=

=
o

[
=]

32 26 26 28
33 302 10 15
34 26 12 18

35 44 24 30

14 12 26

9 4 20 6 24
26 16 6 12
19 510
10 16
8 16

14 14 7 612 8151012

14 28 14 8
6 62614 18

23 140840 610
1222 81612 21
15 16 10 12[J2 6 38 14
46[08 10 14 8 10 14 13

411 444 1103 4§§ 20 12

630 412 823 8 42617 446

[PEWENE 2403 32 50 14 16 10 602 34 19 6[8 5 28 8 16 1902 22
31 632 616 92220 832 41819 10 10 10 30[0g 8 10 5h1632 60
33 6 410 916 56832 51420
2802101024 6 5 6103827 4

1916 61028 6 26 14
26 35 10.10 1510 8 28 10 28 8

16 7 14 22
8 613 B8 18 16 10
17 7 11 14

8 30 14 o[l 1604

18 6 18 12 12 14 16
10 12 15 10 10 22 14 Sl 6 14 14
32 1908 20 12 16[J1§ 10
16 6[.226 11 8 36[J8 12 20

13 10 10 22 22 10 28§ 31 44 12 20 24
22 10 16 6 30 36 19 16 16 10
46 8 8[3 91416 50210 8 108 8
12261652 824 9 1118 610
10 18 14 14 18 21 8 38 28 12
1640201219 8 6 828 22410

26 10 18 25 650 16 4 36
61233141241 614 8

4612 636 6 16 25 20 14 12 18 12 22

45 13 14 340 10 24 10
36 7102 52 25 18.3018P141630M16 4511 14 648 6 8

37 16 18 5 18

6 67 14 10

39 18 20 28 58 16 10
40 20 18 28 57 10 20

11 8 620103416 4 4
38 3408/ 57 20 6 12 22 26 46 14 38 42 12 29 15 14 40

1212201210 6361452 § 14 7
24 1002 14 9 42[id 79 26 6 14 11 30

8 14 20 14 404
664 6283412
12 69 14 18 14

6 38 18 10

TABLE 1. All classes of n < 40 (first column) and j < 31 (first row) for which their continued fractions of

V/N = y/n2 + j have been described are highlighted.

(=): If the length of the period equals 2, then by

Theorem [3.1| we have v/N = [n, z, 2n).
n?+j=n+ (V2 +j—n)

:n~|— s

hence we have

1
Vnli4+j—n= _ )
z(v/n?+j+n)+1
n2+j+n
2n
€r = —. | |
J

Observation 3.5. The continued fraction of VN
has period of length 3 if and only if j = 4ak + 1 and
n = aj + k for some a,k € N, a > 1, k> 1. It holds
then VN = [n,2a,2a,2n] and 5 < j <n —1.

Proof. (=) : If the length of the period equals 3, then
by Theorem we have VN = [n,z, z, 2n].

1
n2+j=n+ 1 ;
T+
N 1

x

n+(v/n?+j—n)

. 2emn+1 :
hence we get j = ———. Since j is an integer, x

2+ 1

must be even. Furthermore, as j # 1 by Observa-
tion @ there exists a > 1 such that x = 2a. It
dan +1 ,
Mz—ilthatn:ajJr%.
Since n is an integer, we obtain finally j = 4ak + 1
and n = aj + k for some k > 1. It is easy to verify
that j >5and j <n—1.

(«<=) : The reverse implication is only an exercise in
manipulation with square roots and integer parts. We
have it for the reader. m

follows then from j =

In order to save space in the proofs, let us introduce
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n J VN
(=4 2k+1,k>2 2n-3 [n1,%531,2n]
2k+1, k>1 sntl [, T1,2,1,2n]
3k +2 k2 [n,1,4,1,2n)
3k+2, k>1 2n-2 [n1,224 1,20
3k 42 ntl  [n,1,1,1,2n]
5k+2, k>1 n—-1 [n2 2222 2n]
5k + 4 Sntd [ 13,1, 2n)
6k+1, k>1 skl [n,2,2,2,2n]
6k +5 ol n,3,271,3,2n]
9%k +4, k>1 n-2 [n2, 222 2n]
=5 2k+1, k>1 4 [n, 251, 1,1, 251 2]
5k +3 nt2 [n,1,1,1,1,2n]
(=6 2k k>2 2n—3 [n,1,2 —1,2,2 —1,1,2n]
10k + 7 bl [n,4,1, 253, 1,4, 2n]
3k+1, k>1 bl [n,2,1,n —1,1,2,2n]
3k+1, k>1  n+1 [n1,1,222 11,20
3k+1, k>1 nt2 [, 1,2,n,2,1,2n)
6k + 4 mez [, 1,1,2,1,1,2n]
Tk+3, k>1 n+2 [n1,1,22511,2n
(=8 4k+1,k>2 2n-7 [n1,25 2 21 2 12577 9]
6k, k>1 4 [n,1,1,1,"22,1,1,1,2n}
6k+2, k>1 221 [n,3,252,1,4,1,%52,3,2n]
Tk +5 Snt2 [n,1,1,3 n, 3,1, 1,2n]
9% +3, k>1 9 [n, 2%5°5,1,2, 228 21, 2n=8 2p)
9k +6, k>1 9 [n, 2%5-3,2,1, 20512 11 (9 2023 op]
(=10 6k+3, k>1 4 n,1,1,1,251,6,251,1,1,1, 2n]
9% +6 W0nd3 [, 1,1,3,T,n—1,1,3,1,1,2n]
10k+5, k>1 o n,2,1,1, 251,10, 251, 1,1, 2, 2n]

TABLE 2. Lengths ¢ of periods and the form of continued fractions for several classes.

the following notation

(ag,a1,...,an—1,an) = ao+

ay +
! 1

-
1

aN-1+ —

an

where a; € N for i € {0,1,2,...,N — 1}, but ay € R.

Observation 3.6. Let j = 4. If n is even, then
the length of the period is 2 and VN = [n, 2771, 2n].
If n is odd, then the length of the period is 5 and
VN = [n, 251 1,1, 251 2n].

2 1

Proof. If n is even, then 22 is an integer and the

statement is a corollary of Observation [3.4] If n is
odd, it holds

\/W*nJr( +4 - )

e
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n—1 \/n2+4—|—n—2>

:<n, 2 n
—<n — \/n2 4+2>
- b 2 b
vn? + +n72
:<na 9 3131’ >
—1
:<n,"2 ,1,1,”2 on+ (Vn? +4— >
thus VN = [n, T,l,l," L 2n]. L]

Observation 3.7. Forn > 1 and j = 2n — 1 the
length of the period is 4 and the continued fraction
is then VN = [n,T,n — 1,1, 2n].

Proof.

\/n2+2n—1:n—|—(\/n2+2n—1—n)

< \/n2—|—2n—1—|—n>
={(n
’ o2n —1




VOL. 53 NO. 4/2013

Continued Fractions of Square Roots of Natural Numbers

:<n’1,m+(n—1)>

2
\/ﬁ _
<n o n?+2n—1+(n 1)>
2n—1
:<n,1,n—1,1,2n+(\/n2+2n—lfn)>,
hence VN = [n,T,n — 1,1, 2n L]

Observation 3.8. For n > 3 and j = 2n — 3, either
the length of the period is 4 if n is odd and the con-
tinued fraction is then VN = [n, 1, "7’3, 1, Zn}, or the
length of the period is 6 if n is even and the continued
fraction is then VN = [n, 1, 5—1,2,% —1,1,2n].

Proof. For n odd:

\/n2+2n—3:n+(\/n2+2n—3—n)

—<n \/n2—|—2n—3—|—n>
S\ 2n — 3
:<n,1, \/n2+2n—3—(n—3)>
4
:<n’1’n—3’\/n2+2n—3+(n—3)>
2 2n—3
n—3
:<n7177,172n—|—(\/n2—|—2n—3—n)>7

2
thus VN = [n717"T_3,1,2n].

For n even:

\/n2+2n—3:n—|—(\/n2+2n—3—n)

< vn?+2n—3 +n>
=(n,
2n —3
\/ﬁ_ —
:<n,1, n?+2n—-3—(n 3)>
2n —3
:<n71’§ \/n2+2n73+(n—1)>
2 n—1
n \/n2+2n—3+(n—1)
= 3177 >
(n 2 4
—<n1ﬁ 5 1 \/n2+2n—3+(n—3)>
- 772 772 7 2”—3
:<n7]-aﬁ 7an 1,1,
2 2
2n+(\/n2+2n—3—n)>.

Thus VN = [n,1,2 —1,2,%2 —1,1,2n]. "

The following table will include all remaining cases
of continued fractions of y/n? + j that we were able
to determine in terms of n and j.

Observation 3.9. Let k € N. Let us summarize
in Table[2 the lengths ¢ of periods and the form of
continued fractions for several classes (described in
an analogous way) of n and j.

The next observation was made in a different way
than all previous ones. We prescribed the form of the
continued fraction and searched for v/ N having such
a continued fraction.

Observation 3.10. If the period of the continued

fraction of VN = \/n2?+ j contains p > 1 ones as

its palindromic part, i.e., VN = [n,1,...,1,2n] then
P

3¢, where

{eN, and j = , Where F,, denotes the n-

th Fibonacci number given by the recurrence relation
F 1=0,Fh=1and F,, =F,,_>+F,_1 foralln > 1.

277,Fp 1+Fp 2
F;

Proof. Tt is a direct consequence of the proof of The-
orem [3.2] and the definition of continuants. L]

The last observation is also of a different form than
the previous ones since j and n depend on two pa-
rameters.

Observation 3.11. Let n = 4ka + 2a, where k,a €
N,k > 1,a > 1, and j = 8a. Then the continued

fraction of VN = \/n? + j equals

T
, 1, n ,J,2n]
2j

—
[t s
27 2

Proof. The proof may be found in [5]. L]

We also made one conjecture that turned out to
be false.

Conjecture 3.12. For v N the length of the period
of the continued fraction is less than or equal to 2n.

This observation was made when contemplating
a table of periods of VN for N < 1000. However,
n [8] it is shown that for N = 1726 with n = 41,
the period of the continued fraction of v/N is of
length 88 > 82 = 2n. A rougher upper bound comes
from [7].

Theorem 3.13. For /N the length of the period of
the continued fraction is less than or equal to 2N .

Let us terminate with two conjectures that have
not been proved yet.

Conjecture 3.14. No element of the period of vV
apart from the last one is bigger than n.

Conjecture 3.15. There is no period of an odd
length for j = 4k 4 3, where k € N.
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