Acta Polytechnica 53(4):338-343, 2013

© Czech Technical University in Prague, 2013

available online at http://ctn.cvut.cz/ap/

DEVELOPING CONTROL AND MONITORING SOFTWARE FOR
THE DATA ACQUISITION SYSTEM OF THE COMPASS
EXPERIMENT AT CERN

MARTIN BODLAK?, VLADIMIR JARY®*, IGOR KONOROV®?, ALEXANDER MANN’
JOSEF NovY®, SEVERINE PAUL?, MIROSLAV VIRIUS®

® Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Biehovd 7, 115
19 Prague 1, Czech Republic

Physik Department, Technische Universitat Miinchen, James-Franck-Str. 1, 85748 Garching, Germany

corresponding author: Vladimir.Jary@cern.ch

ABSTRACT. This paper focuses on the analysis, design and development of software for the new data
acquisition system of the COMPASS experiment at CERN. In this system, the data flow is controlled
by custom hardware; the software will therefore be used only for run control and for monitoring. The
requirements on the software have been analyzed, and the functionality of the system has been defined.
The system consists of several distributed nodes; communication between the nodes is based on a
custom protocol and a DIM library. A minimal version of the system has already been implemented.
Preliminary results of performance and stability tests have shown that the system fulfills the defined
requirements, and is stable. In the next phase of development, the system will be tested on the real

hardware. It is expected that the system will be ready for deployment in 2014.

KEYWORDS: data acquisition, remote control, monitoring, COMPASS.

1. INTRODUCTION

Modern high energy physics experiments depend
strongly on the computer systems that are used for
the simulations, data acquisition, data storage, and
data analysis. This paper focuses on the software
development for a new data acquisition system for
the COMPASS experiment. First, the experiment is
briefly introduced. Then the existing DAQ system,
based on the ALICE DATE package, is explained,
and the problems with it that triggered the develop-
ment of the new systems are analyzed. Next, a new
system featuring the hardware controlled data flow
is presented and the results of a requirements analy-
sis are summarized. Then, a proposal for a minimal
version of the software that fulfills these requirements
is presented. The first results of performance and
scalability tests are then summarized. Finally, the
plans for future development are presented.

2. THE COMPASS EXPERIMENT

COMPASSH COMPASS is a high-energy fixed-target
experiment situated at the Super Proton Synchrotron
at CERN, built for studying the gluon and quark
structure and for spectroscopy of hadrons using high
intensity muon and hadron beams [I]. The scien-
tific program was approved by the CERN scientific
council in 1997; it includes research on hadron struc-
ture and spectroscopy with high-energy hadron and

LCOMPASS is the acronym for the Common Muon and
Proton Apparatus for the Structure and Spectroscopy

338

muon beams. After several years of preparation and
commissioning, data gathering began in 2002.

The experiment is currently entering its second
phase, known as COMPASS-II, which covers stud-
ies of Primakoff scattering, the Drell-Yan effect, and
generalized parton distributions [2]

3. EX1STING DAQ ARCHITECTURE

The COMPASS spectrometer is composed of detectors
that are used to track and identify particles and to
measure energies of particles. The data acquisition
(DAQ) system is used to read out data from detectors,
to assemble full events from fragments from different
detector channels, and to store events into permanent
storage. The DAQ system also provides control and
monitoring.

The COMPASS DAQ system consists of several lay-
ers [3]. The front-end electronics that form the lowest
layer continuously preprocess and digitize analog data
from the detectors. There are approximately 250000
detector channels. Data from multiple channels is
read out and assembled by the concentrator modules
called CATCHZ and GeSiCAPl These modules receive
the signals from the time and trigger system; when
the trigger signal arrives, the readout is performed.
The subevent is created by adding the time stamp and
the event identification to the data. The subevents
are transferred using the optical bus S-Link to the
readout buffers that form the following layer of the

2COMPASS Accumulate, Transfer, and Control Hardware
3GEM and Silicon Control and Acquisition module

http://ctn.cvut.cz/ap/

VOL. 53 NO. 4/2013

Developing Control and Monitoring Software

Service
Registration

@Iisher

—_ DIM Name Server
-
N
Service 7~ « \
information
/ Service /
/ Requestion /
/ g \
- . .
,f - Service information
@ Commands
e
S —
—

—

Subscription

—
—

FIGURE 1. DIM Name Server.

architecture. Readout buffers are standard servers
equipped with custom PCI cards called spillbuffers.
Spillbuffers are used for buffering subevents, which
allows the load to be distributed across the full cycle
of the SPS accelerator. Finally, the subevents are sent
over the Gigabit Ethernet to the event builders that
assemble full events and transfer them to permanent
tape storage. The remaining CPU power of the event
building servers is used for data quality monitoring
and for filtering purposes.

The data acquisition is powered by the DATE soft-
ware [4], which has been adopted from the ALICE
experiment. This package is designed to perform data
acquisition tasks in a distributed environment; each
node must be powered by Intel-compatible hardware
and a GNU/Linux operating system. DATE is a very
flexible and scalable system — at the ALICE exper-
iment, it is deployed on hundreds of nodes, but it
can also be used in a small laboratory experiment on
a single node. From the functionality point of view,
the DATE package provides data flow control, event
building, data quality monitoring, event sampling,
information reporting, interactive configuration, and
run control.

4. MOTIVATION FOR UPGRADE

During the first year of data taking (i.e. 2002), the sys-
tem collected 200 TB of data [5], and this amount rose
almost 10 times to 2 PB in 2010. The requirements
on the DAQ system increase as the trigger rate and
the beam intensity increase, and the existing system
has already experienced performance problems and
increased dead time. Additionally, as the hardware
gets older, its failure rate also increases.

One possible solution is to upgrade the hardware
of the event builders and the readout buffers. Unfor-
tunately, the spill buffer cards in the readout buffers
are based on the deprecated PCI technology. It would
therefore be necessary to develop and produce a PCI
Express version of these cards. However, no software

development (with the exception of the kernel driver
for the new spill buffer card) would be necessary in
this scenario.

Another scenario proposes replacing the event build-
ing network with custom hardware based on FPGA
programmable circuit{]] [6]. This hardware would
perform the readout and the event building, so the
software would be used only for control and monitor-
ing. This system would consist of fewer components,
so it should be more reliable and easier to maintain.
As an additional benefit, the existing readout buffers
and event builders could be used as an online filtering
farm.

5. REQUIREMENTS ON THE NEW
SOFTWARE

The control and monitoring software is to be deployed
in a distributed heterogeneous environment. Some
nodes (e.g. the user interface application) will be in-
stalled on standard Intel-compatible hardware, but
the control and the monitoring nodes will be deployed
on custom cards with softcore processors. We have
evaluated the possibility of using the DATE package
on the new DAQ architecture; unfortunately this idea
has been rejected — mainly because DATE requires
Intel-compatible hardware and, moreover, the system
is too complex.

However, the DATE data format must remain un-
changed in order to make the new architecture com-
patible with the tools for the physical analysis. Ad-
ditionally, some DATE components, e.g. the online
filter, could be reused. In order to retain compatibil-
ity with the detector control system, the DIM library
must be used for network communication.

Moreover, the system must support the remote
control, and multiple users should be able to access
the system. However, only one user can take the
control over the system at any time. The other users
can monitor the behavior of the system.

4Field Programmable Gate Array

339

M. Bodlak, V. Jary et al.

AcTA POLYTECHNICA

—> DIM Name Server |\
- A 0 NN
/ [. \ \
/ | \ \
Slave 1
I | \ \
A
\ v v |
\ Master > Slave N /
AN
/
/
/7
/ e
] Vs
MsgBrowser MsglLogger
(DB client) (DB client)
Configuration DB

FIGURE 2. Software layers.

Data acquisition does not require real time opera-
tion, so it is not necessary to depend on the real time
operating system and special libraries.

6. DIM LIBRARY

DIM (Distributed Information Management) is a soft-
ware package that provides asynchronous, one-to-
many communication in a heterogeneous network en-
vironment [7].

The library is based on the TCP/IP protocols; the
client-server paradigm is extended by the concept of
a DIM name server (DNS). In order to publish an
information service or a command, a server (publisher)
must register it at the name server. When a client
(subscriber) wishes to subscribe to some service, it
asks the name server which server has published that
service. The communication with the name server is
transparently provided by the library; the user has
only to provide the location of the DNS (usually by
exporting an environmental variable).

DIM is a C library, but interfaces to C++, Java,
and Python languages also exist. The performance of
the library was measured for different message sizes,
and the C+4 and Java interfaces were compared.
We found that, for larger messages, the DIM library
can saturate the network [8]. The Java version of
the library calls the native C code through the Java
Native Interfaces. The performance hit caused by JNI
calls is about 20 % for smaller messages; for larger
messages, the performance hit can be neglected.

Additionally, it has been found that the Java ver-
sion of the DIM library is still incomplete. It was
therefore decided to focus on C++ and to abandon
Java. However, the Python language can be used for
some auxiliary tasks, such as waking up the slaves.

340

7. OVERVIEW OF THE SOFTWARE
ARCHITECTURE

Using the results of the requirements analysis, we
designed the structure of the control and monitoring
system. The system is deployed on several distributed
nodes. Communication between nodes is based on the
DIM package. The nodes can be divided into several
categories, according to their purpose. According to
Figure 2] one node acts as the master. The master
node receives commands from applications that pro-
vide the graphical user interface, and forwards these
commands to the slave nodes. In turn, the slave nodes
generate monitoring data and confirmation messages
that are sent back to the master. At one time, multi-
ple user interface applications can receive data from
the master. However, only one instance can issue
commands. In addition, communication between the
master node and the user interface is based on the
DIM library, which means that remote control is pos-
sible.

The configuration of the system is stored in the
online MySQL database — the MySQL database was
chosen for its compatibility with the existing DAQ
system. This configuration includes the lists of slave
nodes for different scenarios, e.g. calibrating or data
taking. When the system starts up, the master loads
the appropriate list of slaves from the database, it
connects to them (via SSH) and wakes up the slave
processes. The system configuration is propagated
from the master to all slaves using the DIM services.
In this way, only the master process needs access to
the database.

One node called Message Logger is used to collect
messages generated during important events (mes-
sages of an informative character, e.g. change of the
current state of a node) or unexpected events (i.e.
errors) produced on other nodes. These messages are

VOL. 53 NO. 4/2013

Developing Control and Monitoring Software

Header
1. Data size 4 bytes Size of data in 32b words
(= header_size+body_ size+trailer_ size)
2. Version 4 bytes Version of data protocol
3. Sender 1D 4 bytes Unique ID of message’s sender (from DB)
4. Message number 4 bytes Number of message
5. Receiver ID 4 bytes Unique ID of message’s receiver
(0=multicast) (from DB)
6. Message ID 4 bytes Message 1D
7. Time 4 bytes Time stamp 1/2
8. Time 4 bytes Time stamp 2/2
Body
9. Body 0-4N bytes Body of message (can be empty)
Trailer
10. Reserved 4 bytes 0x00000000
11. Reserved 4 bytes 0x00000000
12. Message number 4 bytes Number of message
(the same as in header of message)
13. Message number 4 bytes

TABLE 1. Transport protocol.

temporarily stored in a memory buffer, and under
specified conditions (i.e. the number of messages in
the buffer or the time elapsed since the first message
stored in a buffer) are stored in the MySQL database.
This message logger is de facto a DIM server that
receives messages sent by other nodes (see Figure .
A message is sent directly to the DIM server as contin-
uous text, and is parsed on the server side according
to the log protocol.

Messages already stored in the database can be
viewed using a Message Browser application. Message
Logger and Message Browser replace the functionality
of the infoLogger and the infoBrowser applications
from the DATE package.

It was decided to use the QT framework for imple-
menting the slave, the master, and the GUI parts. QT
extends the object model of C++ language, and it
also provides a large class library that covers graphical
components (widgets), networking, database access,
multithreading, or data manipulation. Additionally,
the framework supports all the major platforms - Win-
dows, MacOS, and GNU/Linux with X11. The slave
and the master were successfully tested on QT version
4.2.1 and the GUI on version 4.6.1. The slave includes
both the DIM server and DIM client parts. For all
outgoing communication, the slave uses only DIM ser-
vices. However, for incoming communication it uses
DIM commands and DIM services. The Master is also
a combination of a DIM server and a DIM client. It
uses DIM services for regular, more frequent or multi-

cast messages, and DIM commands for precise sending
of messages to control the state of a single node. GUI
has only the client part of the DIM library, so it com-
municates by sending commands to the master and
receiving status messages from master’s services.

8. TRANSPORT PROTOCOL OVERVIEW

We proposed and implemented a custom protocol that
is used for exchanging information between nodes.
This protocol defines a common frame for transport-
ing messages and commands. This provides easier
information manipulation in them. A precise descrip-
tion of this protocol is summarized in Table[I] The
program uses the QByteArray class for assembling
the frames

9. PERFORMANCE TESTS

The architecture described above was thoroughly
tested during the winter shutdown of the experiment.
The DIM name server, the master and the slave pro-
cesses were deployed on the existing event builders
located in the COMPASS experimental hall; the mes-
sage logger, the database server, and the graphical
user interface were deployed on computers in the re-
mote control room [9]. Communication between all
nodes is provided by the Gigabit Ethernet, which
limits the theoretical transfer speed with a value of
128 MB/s.

341

M. Bodlak, V. Jary et al.

AcTA POLYTECHNICA

Speed results

Transfer speed

Transfer speed [MB/s]

1000

Il
10000 100000 le+06

Message size [Bytes]

FI1GURE 3. Transfer speed.

Several tests were performed for different message
sizes and for different number of slaves. As shown in
Figure [3] the system can almost saturate the network
for messages larger than 1kB. For smaller messages,
the performance bottleneck is caused by the commu-
nication with the DIM name server. At these speeds,
the system is able to exchange approximately 90000
1kB messages per second. As real time operation is
not required, this result is promising — it is expected
that the final system will require a transfer rate of
thousands of messages per second at most.

The stability of the system in time was also eval-
uated; the results are summarized in Figure[d The
system exchanged messages continuously between the
master and 10 slave nodes over a period of 20 hours.
During this period, no memory leaks were detected,
and the transfer speeds remained constant. The ob-
served peaks were probably caused by the time syn-
chronization with the NTP server. However, this issue
is not yet fully comprehended, and it requires further
investigation and testing.

10. CONCLUSION AND OUTLOOK

The existing data acquisition system of the COM-
PASS experiment has been analyzed. The readout
part of the data acquisition is based on deprecated
PCI technology, so two different upgrade scenarios
were considered. The first scenario involves developing
a PCI Express version of the spillbuffer cards, while
the second scenario proposes replacing the readout
buffers and event builders with a new architecture
based on the FPGA technology. We analyzed the
requirements posed on the software for this new hard-

342

ware architecture, and we proposed and implemented
the minimal control and monitoring application frame-
work. The preliminary performance and stability test
results have been discussed - the performance of the
system should meet the expected requirements.

During the rest of the winter shutdown, further
tests are scheduled. In order to test the system under
more realistic conditions, the slave processes need to
be deployed on the GeSiCA concentrator modules
equipped with the prototypes of the new hardware.
At longer scale, the system specification needs to be
extended and finalized in 2012 so that the system will
be ready for final testing during the expected annual
shutdown of all CERN accelerators in 2013. It is
planned to deploy the new architecture for the 2014
Run.

ACKNOWLEDGEMENTS

This work has been supported by Czech Ministry of Educa-
tion, Youth and Sports grants LA08015 and SGS 11/167.

REFERENCES

[1] P. Abbon et al. (the COMPASS collaboration). The
COMPASS experiment at CERN. In: Nucl. Instrum.
Methods Phys. Res., A 577, 3 (2007) pp. 455-518.

[2] Ch. Adolph et al. (the COMPASS collaboration).
COMPASS-II proposal. CERN-SPSC-2010-014;
SPSC-P-340 (May 2010).

[3] L. Schmitt et al. The DAQ of the COMPASS
experiment. In: 13th IEEE-NPSS Real Time Conference
2003, Montreal, Canada, 18-23 May 2003, pp. 439-444.

[4] T. Anticic et al. (ALICE DAQ Project). ALICE DAQ
and ECS User’s Guide. CERN EDMS 616039, January
2006.

VOL. 53 NO. 4/2013

Developing Control and Monitoring Software

System stability

80000

20000 T T T T T
Messages exchanged
- 15000 - E
c
o
o
@
“n
3
o
n
[0}
[=)]
& 10000 - E
0
@
£
=]
[}
j=)]
=
]
=
o
X
w 5000 1
0 L 1 1 L L 1 1
0 10000 20000 30000 40000 50000 60000 70000
Elapsed time [s]
FIGURE 4. System stability.

[5] T. Nagel. Cinderella: an Online Filter for the
COMPASS Experiment. Miinchen: Technische
universitdt Miinchen, January 2009.

[6] A. Mann, F. Goslich, I. Konorov, S. Paul. An
AdvancedTCA Based Data Concentrator and Event
Building Architecture. In 17th IEEE-NPSS Real-Time
Conference 2010, Lisboa, Portugal, 24-28 May 2010.

[7] P. Charpentier, M. Dénszelmann, C. Gaspar. DIM, a
Portable, Light Weight Package for Information
Publishing, Data Transfer and Inter-process
Communication. Available at:
http://dim.web.cern.ch [2013-08-20]

[8] V. Jary, T. Liska, M. Virius. Developing a New DAQ
Software For the COMPASS Experiment. In: 37th
Software Development, Ostrava: VSB — Technick4
univerzita Ostrava, 2011, ISBN 978-80-248-2425-3. p
35-41.

[9] M. Bodldk, V. Jary, T. Liska, F. Marek, J. Novy,
M. Plajner. Remote Control Room For COMPASS
Ezxperiment. In: 37th Software Development, Ostrava:
VSB — Technické univerzita Ostrava, 2011, ISBN
978-80-248-2425-3. pp. 1-9.

[10] COMPASS page [online]. 2010. Available at:
http://wwwcompass.cern. ch| [2013-08-20]

343

http://dim.web.cern.ch
http://wwwcompass.cern.ch

	Acta Polytechnica 53(4):338–343, 2013
	1 Introduction
	2 The COMPASS experiment
	3 Existing DAQ architecture
	4 Motivation for upgrade
	5 Requirements on the new software
	6 DIM Library
	7 Overview of the software architecture
	8 Transport protocol overview
	9 Performance tests
	10 Conclusion and outlook
	Acknowledgements
	References

