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Abstract. The quality of a high-grade solid biofuel depends on many factors, which can be divided
into three main groups — material, technological and structural. The main focus of this paper is on
observing the influence of structural parameters in the biomass densification process. The main goal is
to model various options for the geometry of the pressing chamber and the influence of these structural
parameters on the quality of the briquettes. We will provide a mathematical description of the whole
physical process of densifying a particular material and extruding it through a cylindrical chamber and
through a conical chamber. We have used basic mathematical models to represent the pressure process
based on the geometry of the chamber. In this paper we try to find the optimized parameters for the
geometry of the chamber in order to achieve high briquette quality with minimal energy input.

All these mathematical models allow us to optimize the energy input of the process, to control
the final quality of the briquettes and to reduce wear to the chamber. The practical results show
that reducing the diameter and the length of the chamber, and the angle of the cone, has a strong
influence on the compaction process and, consequently, on the quality of the briquettes. The geometric
shape of the chamber also has significant influence on its wear. We will try to offer a more precise
explanation of the connections between structural parameters, geometrical shapes and the pressing
process. The theory described here can help us to understand the whole process and influence every
structural parameter in it.
Keywords: densification process, numerical optimalization for structural parameters, mathematical
model for cone chamber, mathematical model for cylindrical chamber.

1. Introduction
Current European legislation set targets for using
renewable energy sources, which will result in the
gradual replacement of fossil fuels. Biomass is the
most promising renewable energy source, and offers
the most effective options for energy storing. This
leads to a need to carry out research in the area of pro-
cessing biomass and transforming it into a high-grade
solid biofuel. The compaction process can affect the
mechanical quality indicators of biofuels, especially
their density and mechanical resistance. The geome-
try of the pressing chamber has an enormous impact
on the quality of the briquettes and on the required
press pressure. It is therefore appropriate to work on
optimizing the geometry of the pressing chamber in
order to achieve high briquette quality together with
minimum energy input.

2. Structural parameters in the
densification process

The quality of solid high-grade biofuels depends on
many factors, which can be divided into three groups:

• material parameters,
• technological parameters,
• structural parameters.

The material parameters affecting the quality of
briquettes are mostly linked to the characteristics of
the starting material (material strength, composition
etc.) and some physical constants. The technolog-
ical parameters (humidity, size of the compression
pressure, pressing temperature, pressing speed, etc.)
can dramatically affect the process of compaction and
the quality of the briquettes. However, the structural
parameters have a special place in the pressing pro-
cess, since the successful production of high-quality
briquettes involves synergies between all the groups.
The main structural parameters affecting the quality
of briquettes are:
• the diameter of the pressing chamber,
• the length of the pressing chamber,
• the convexity of the pressing chamber.
Only a limited amount of work is currently being

done on mathematical descriptions of the biomass
briquetting and pelleting process, the influence of the
parameters of the process on the final quality of the
briquettes, and descriptions of the effects of pressure
in the pressing chamber. There are no complete math-
ematical models that deal mainly with the impact
of structural parameters on the pressing process. It
is clear that a detailed study of the impact of all of
structural parameters on the pressing process and
the resulting quality of briquettes is a very extensive
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Figure 1. Specification of the geometry of the press-
ing chambers in the process of pelleting biomass: a)
normal, b) deep, c) flat d) well, e) cylindrical, f) coni-
cal, g) stepped.

Figure 2. Pressing chamber geometry of the screw
briquetting press.

undertaking, and requires a detailed analysis of this
issue. The most significant influence on the pressing
process is from the geometric parameters of the press-
ing chamber, i.e. the shape and dimensions (diameter,
length and convexity of the chamber). The geometry
of the pressing chambers currently used for producing
solid biofuels is very diverse. It consists of a cylin-
drical part, in most cases also with a conical part.
There is often a combination of several cylindrical and
conical parts (Figure 1, Figure 2). The length of the
cylindrical part provides the necessary back pressure
by the friction part of the force. It also provides bio-
fuels with a high-quality smooth surface. The conical
part of the chamber provides spatial movement of the
particles and a higher degree of compaction, resulting
in higher production quality. When the material is
extruded through the conical part of the chamber,
the briquettes are given greater density and strength.
However, the friction and pressing conditions in the
conical chamber greatly increase the required press
pressure. The shape and the size of the pressing cham-
ber have a direct impact on the production quality
and on the size of the required compression pressure.
It is therefore necessary to provide a mathematical
description of the whole physical process of densify-
ing a particular material and extruding it through
a cylindrical chamber, a conical chamber and also
a combined chamber. The mathematical models de-
scribing the pressure conditions that are presented
here form the basis of our study of the geometry of
the chamber. Our study focuses on optimizing the
chamber geometry in order to achieve high briquette
quality together with minimum energy input.

Figure 3. Forces in cylindrical pressing chamber.

3. Mathematical background —
a cylindrical chamber

We will use the following notation in this paper, see
Figure 3:

• dx — height of an infinitesimal cylinder, dx > 0;
• d — cylinder diameter;
• Sv — area of the bottom of the cylinder;
• S — surface area of the cylinder;
• pa — axial pressure
• pr — radial pressure
• dpa — the pressure change between the top and
bottom base, dpa < 0.

We suppose that F1 > F2. Based on force equilibrium,
we can state the following equation:

F1 − F2 − F3 = 0.

By simple computation we can state that the force
acting on the top base is

F1 = paSv = paπ
(d

2

)2
= pa

πd2

4 ,

and the force acting on the bottom base is

F2 = (pa + dpa)Sv

= (pa + dpa)π
(d

2

)2
= (pa + dpa)πd

2

4 .
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The friction force F3 is a special case. We will use the
coefficient of support friction and the axial force to
evaluate F3:

F3 = µFN = µpeS = µprπd dx.

We know that the radial pressure and the axial pres-
sure should be connected with their horizontal com-
pacting ratio λ:

λ = σr
σa

= pr
pa
,

where σr is the radial stress and σa is the axial stress.
So we have

F3 = µFN = λpaπd dx.

Based on equilibrium of forces, we can derive the
differential equation for pressure changes between the
two bases of the cylinder:

F1 − F2 − F3 = 0,

pa
πd2

4 − (pa + dpa)πd
2

4 − µλpaπd dx = 0.

Let us suppose that dx→ 0 and dpa → 0, then

d

4
dpa
dx

+ µλpa = 0. (1)

The axial pressure depends on the place, so we need
to locate our cylinder on the axes. Based on this, we
are able to rewrite the axial pressure to the function
relation

d

4p
′
a(x) + µλpa(x) = 0.

Hence we have a linear differential equation with con-
stant coefficients, and we can find its solution in the
form

pa(x) = c1e
−kx,

wheree k is a constant given by

k = 4µλ
d
.

The result is in accordance with the physical princi-
ple that pressure decreases according to distance from
the origin of the coordinate. Based on our coordinate
system, we have:
• x = 0 — the start position of pressing chamber
between compactor and material,

• x = L — the start position of pressing chamber.
Thus we are also able to compute the Cauchy problem
with the initial conditions pa(x) = pap, where pap is
the constant pressure of the compactor on the material
throughout the pressing phase:

pa(x) = c1e
−kx =⇒ pa(0) = c1e

0 = pap,

pap = c1,

pa(x) = pape
− 4µλ

d x. (2)

Figure 4. Forces in a conical pressing chamber.

The outgoing pressure on position L can be computed:

pa(L) = pape
− 4µλ

d L.

We are also able to express the incoming pressure pap
in terms of the outgoing pressure:

pap = pa(L)e+ 4µλ
d L.

4. Mathematical background —
a truncated cone chamber

A truncated cone is a more complicated case than the
classical cylinder. Simply speaking, the cylinder is
only a special case of the truncated cone, with the
elevation angle α = 0. We will use the same ideas and
the same notation as for the cylinder — see Figure 4.

In the case of a truncated cone, the force equilibrium
will change:

F1 − F2 − cosαF3 = 0.

The direction of friction force F3 contains elevation
angle α with the direction of forces F1 and F2. So we
can write

paS1 − (pa + dpa)S2 − cosαF3 = 0,

where S1 is the area of the top case and S2 is the area
of the bottom case.

The same coordinate system is used as for the cone.
By simply computation we can state that the force

acting on the top base is

F1 = paS1 = paπ
(d2 + 2v

2

)2
,

where d2 is the diameter of the bottom case and v is
the width of ring of the top case. The force acting on
the bottom base is

F2 = (pa + dpa)S2 = (pa + dpa)π
(d2

2

)2

= pa
πd2

2
4 + dpa

πd2
2

4 .
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Figure 5. Essential dimensions of elementary trun-
cated cone.

Then we have

paπ
(d2 + 2v

2

)2
− pa

πd2
2

4 − dpa
πd2

2
4 = F3 cosα. (3)

By simplification we get

F3 = π

4 cosα

(
pa

(
(d2 + 2v)2 − d2

2
)
− dpa d2

2

)
= µFN ,

where FN is the normal force.
Now we will try to find a proper evaluation for the

friction force. We need first of all to compute the
surface area of the cone. We have

Sv = π
(d1

2 + d2

2

)
s,

where d1 and d2 are the diameters of the top and
bottom cases of the cone, and s is the length of the
lateral surface. Based on Figure 5, we can compute

sinα = d1 − d2

s
or cosα = dx

s
,

where s = d

sinα.

Hence for the surface area of the cone we have

Sv = π
(d1

2 + d2

2

)
s = π

(d1

2 + d2

2

) dx

cosα.

Then

F3 = µFN = µprπ
(d1

2 + d2

2

) dx

cosα.

We know that the radial pressure and the axial pres-
sure should be connected with their horizontal com-
pacting ratio λ. In the case of a truncated cone, the
situation is slightly different. Radial pressure pr is
perpendicular to the lateral surface, so the horizontal
ratio must make provision for this:

λ = σr
σa

cosα = pr
pa

cosα,

where σr is radial stress and σa is axial stress.
So we have

λ = pr
pa

cosα and pr = λpa
cosα

.

Finally, we have

F3 = µFN = µλpa
1

cosαπ
(d2 + 2v

2 + d2

2

) dx

cosα. (4)

Let us go back to the equilibrium state equation. From
(3) and (4) we have

π

4 cosα
(
pa(d2 + 2v)2 − pad2

2 − dpa d2
2
)

= µλpa
1

cosαπ
(d2 + 2v

2 + d2

2

) dx

cosα.

By simple computation we have

pa
(
(d2 + 2v)2 − d2

2
)
− dpa s2

2

= 4µλ
cosαpa

(d2 + 2v
2 + d2

2

)
dx.

We can express the ratio tanα = v/dx. It implies
v = tanαdx. The left-hand side should be simplified:

pa
(
(d2 + 2v)2 − d2

2
)
− dpa d2

2

= pa(d2
2 + 2vd2 + 4v2 − d2

2)− dpa d2
2

= pa(2 tanα dx d2 + 4 tan2 αdx2)− dpa d2
2.

The infinitesimal element should be considered as
sufficiently small, so we can omit the term 4 tan2 αdx2.
Then we have

pa(2 tanαdx d2)− dpa d2
2

= 4µλ
cosαpa

(d2 + 2v
2 + d2

2

)
dx,

− dpa d2
2

= −pa(2 tanαdx d2) + 4µλ
cosαpa

(d2 + 2v
2 + d2

2

)
dx.

Let us suppose that dx→ 0 and dpa → 0, then

dpa
dx

d2
2 = +pa(2 tanαd2)− 4µλ

cosαpa
(d2 + 2v

2 + d2

2

)
.

The axial pressure depends on the place, so we need to
locate our cylinder on the axes. Based on this, we are
able to rewrite the axial pressure pa to the function
relation

dpa(x)
dx

d2
2

= +pa(x)(2 tanαd2)− 4µλ
cosαpa

(d2 + 2v
2 + d2

2

)
.

Hence we have a linear differential equation with a
constant coefficient:

d2
2p
′
a(x) +

(
4µλ
cosα

(d2 + 2v
2 + d2

2

)
− 2 tanαd2

)
pa(x) = 0

and we can find its solution in the form

pa(x) = c1e
−kx,
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Λ = 0.15

Λ = 0.25

pap = 140 M Pa
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Figure 6. Cylindrical chamber.

where k is a constant given by

k = 2 secα(2d2λµ+ 2vλµ− d2 sinα)
d2

2
.

The result is in accordance with the physical principle
that the pressure decreases according to the distance
from the origin of the coordinate. Based on our coor-
dinate system, we have:

• x = 0 — start position of pressing chamber,
• x = L — start position of pressing chamber.

Thus we are also able to compute the Cauchy problem
with the initial conditions pa(x) = pap, where pap is
the constant pressure of the compactor on the material
during the whole pressing phase:

pa(x) = c1e
−kx =⇒ pa(0) = c1e

0 = pap,

pap = c1,

pa(x) = pape
− 2 secα(2d2λµ+2vλµ−d2 sinα)

d2
2

x
. (5)

The outgoing pressure on position L can be com-
puted:

pa(L) = pape
− 2 secα(2d2λµ+2vλµ−d2 sinα)

d2
2

L
.

We are also able to express the incoming pressure pap
in terms of the outgoing pressure:

pap = pa(L)e
+ 2 secα(2d2λµ+2vλµ−d2 sinα)

d2
2

L
.

As was mentioned above, the cylinder is only a
special case of the cone, so in the case of angle α = 0,

the result of (5) should be the same as in (2):

pa(x) = pape
− 2 secα(2d2λµ+2vλµ−d2 sinα)

d2
2

x

= pape
−

2 1
cosα (2d2λµ+2vλµ−d2 sinα)

d2
2

x

= pape
− 2(2d2λµ+2vλµ)

d2
2

x

= pape
− 4µλ(d2+2v)

d2
2

x
= pape

− 4µλd1
d2

2
x
.

If diameters d1 and d2 are the same (d1 = d2 = d),
we have

pa(x) = pape
− 4µλd

d2 x = pape
− 4µλ

d x.

The outgoing pressure on position L can be computed:

pa(L) = pape
−

2 1
cosα (2d2λµ+2vλµ−d2 sinα)

d2
2

L
.

We are also able to express the incoming pressure pap
in terms of the outgoing pressure:

pap = pa(L)e
+

2 1
cosα (2d2λµ+2vλµ−d2 sinα)

d2
2

L

5. Numerical experiments
The exact expressions for a conical chamber and for a
cylindrical chamber have been described above. Now
we will deal with some simple numerical experiments.
As has been shown, a linear differential equation was
used in both cases for describing the mathematical
model. In the case of a cylindrical chamber, the
relation between the outgoing pressures on position L
should be computed by the expression

pa(L) = pape
− 4µλ

d L.
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Figure 7. Cone case for α = 2°.
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Figure 8. Cylindrical shape – solid line, Conical shape for α = 2° – dashed line.

In the case of the cone, the outgoing pressures should
be computed by a more complicated expression:

pa(x) = pape
− 2 secα(2d2λµ+2vλµ−d2 sinα)

d2
2

L
.

Let us take the concrete example of a conical pressing
chamber and a cylindrical pressing chamber.
In the case of a cylindrical chamber, we will take

d = 20mm, L = 50mm, µ = 0.35 and λ comes
from the range λ ∈ [0.15, 0.25]. We will suppose that
pap = 140MPa. Then the outgoing press can be
modeled by the graph in Figure 6.
For a conical chamber, the situation is more com-

plicated. Let us suppose α = 2° and the length of the
pressing chamber is the same L = 50mm. Then by

simple computation we can set v = tan 2° · 50mm =
1.74604. Let us assume similar conditions as in the
previous case d1 = d = 20mm. Then d2 + 2v = d1
and d2 = 20− 2 · 1.74604 = 16.5079. The result is in
Figure 7.
Simply stated, the shape of the pressure curve re-

mains the same in both cases, but in the case of the
cone the outgoing pressure is smaller for some pa-
rameters λ than in the case of a cylindrical pressing
chamber. We can compare the two cases in one picture.
We can see that for λ = 0.15 the outgoing pressure is
greater in a conical shape, but the situation is com-
pletely different for λ = 0.25. In that case, it seems
that the conical shape will be more effective. The
conical shape is drawn with a dashed line in Figure 8.
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6. Conclusions
This paper has presented mathematical models for de-
scribing the cylindrical part and the conical part of a
pressing chamber. These models form the basis for our
whole study in the field of densifying biomass into a
solid biofuel. All these mathematical models allow us
to optimize the geometry of the pressing chamber and
the energy input of the process, to control the final
quality of the briquette, and to wear to the chamber.
Practical results show that reducing the diameter and
the length of the chamber and the angle of the cone
have a direct influence on the compacting mechanism
and, as a consequence, on the quality of the briquettes.
The geometry of the chamber also has a significant
influence on its wear. Until now, the geometry of the
chamber has been designed mostly empirically, with-
out any research. However, the theory described here
can help to understand whole process and influence
every structural parameter in the process. The next
step in our research leads toward a mathematically
optimized chamber geometry together with minimum
energy input (minimal pressure).
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