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Abstract. We consider a model of a planar PT -symmetric waveguide and study the phenomenon
of the eigenvalue collision under perturbation of the boundary conditions. This phenomenon was
discovered numerically in previous works. The main result of this work is an analytic explanation of
this phenomenon.

Keywords: PT-symmetric operator, eigenvalues, perturbation, asymptotics.

1. Introduction and main results
In this paper we study a problem in the theory of PT -symmetric operators which has been studied rather
intensively after the pioneering works [12–21]. Our model is introduced as follows.

Let x = (x1, x2) be Cartesian coordinates in R2, let Ω be the strip {x : −d < x2 < d}, d > 0, and let
α = α(x1) be a function in W 1

∞(R). We consider the operator Hα in L2(Ω) acting as Hαu = −∆u on the
functions u ∈W 2

2 (Ω) satisfying the non-Hermitian boundary conditions( ∂

∂x2
+ iα

)
u = 0 on ∂Ω. (1.1)

It was shown in [1] that this operator is m-sectorial, densely defined, and PT -symmetric, namely,

PT Hα = HαPT , (1.2)

where (Pu)(x) = u(x1,−x2), and T is the operator of complex conjugation, T u = u. It was also proven in [1]
that

H∗α = H−α, H∗α = T HαT = PHαP. (1.3)
A non-trivial question related to Hα is the behavior of its eigenvalues. As α(x1) is a small regular localized

perturbation of a constant function, sufficient conditions were obtained in [1] for the existence and absence of
isolated eigenvalues near the threshold of the essential spectrum. Similar results for both regularly and singularly
perturbed models were obtained in [2–6].

Numerical experiments performed in [6, 7] provided a very non-trivial picture of the distribution of the
eigenvalues. An interesting phenomenon discovered numerically in [6, 7] was the eigenvalue collision. Namely, let
t ∈ R be a parameter, then as t increases, operator Htα can have two simple real isolated eigenvalues meeting at
some point. Then two cases are possible. In the first of them, these eigenvalues stay real as t increases and they
just pass along the real line. In the second case, the eigenvalues become complex as t increases and they are
located symmetrically w.r.t. the real axis. The present paper is devoted to an analytic study of this phenomenon.

Suppose λ0 ∈ R is an isolated eigenvalue of Hα, ε is a small real parameter, β ∈W 2
∞(R) is some function.

Denote Γ± := {x : x2 = ±d}. Our first main result describes the case when λ0 is an eigenvalue of geometric
multiplicity two.

Theorem 1.1. Assume λ0 ∈ R is a double eigenvalue of Hα, ψ±0 are the associated eigenfunctions satisfying

(ψ±0 , T ψ
±
0 )L2(Ω) = 1, (ψ+

0 , T ψ
−
0 )L2(Ω) = 0. (1.4)

Suppose also

(b11 − b22)2 + 4b212 6= 0, (1.5)

b11 = i
∫

Γ+

β(ψ+
0 )2 dx1 − i

∫
Γ−

β(ψ+
0 )2 dx1, b22 = i

∫
Γ+

β(ψ−0 )2 dx1 − i
∫

Γ−

β(ψ−0 )2 dx1,

b12 = i
∫

Γ+

βψ+
0 ψ
−
0 dx1 − i

∫
Γ−

βψ+
0 ψ
−
0 dx1. (1.6)
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Then for all sufficiently small ε the operator Hα+εβ has two simple isolated eigenvalues λ±ε converging to λ0 as
ε→ 0. These eigenvalues are holomorphic w.r.t. ε and the first terms of their Taylor series are

λ±ε = λ0 + ελ±1 +O(ε2), λ±1 = 1
2(b11 + b22)± 1

2
(
(b11 − b22)2 + 4b212

)1/2
. (1.7)

The second main result is devoted to the case when the geometric multiplicity of λ0 is one but the algebraic
multiplicity is two.

Theorem 1.2. Let λ0 ∈ R be a simple eigenvalue of Hα and let ψ0 be the associated eigenfunction. Assume
that the equation

(Hα − λ0)φ0 = ψ0 (1.8)
is solvable and there exists a solution satisfying

(φ0, T ψ0)L2(Ω) 6= 0, (φ0, ψ0)L2(Ω) = 0. (1.9)

Then eigenfunction ψ0 can be chosen so that

(φ0, T ψ0)L2(Ω) = 1, (φ0, ψ0)L2(Ω) = 0, (1.10)
ψ0 = PT ψ0, φ0 = PT φ0. (1.11)

Suppose then that this eigenfunction obeys the inequality∫
Γ+

βReψ0 Imψ0 dx1 6= 0. (1.12)

Then for all sufficiently small ε the operator Hα+εβ has two simple isolated eigenvalues λ±ε converging to λ0 as
ε→ 0. These eigenvalues are real as

ε

∫
Γ+

βReψ0 Imψ0 dx1 < 0 (1.13)

and are complex as
ε

∫
Γ+

βReψ0 Imψ0 dx1 > 0. (1.14)

Eigenvalues λ±ε are holomorphic w.r.t. ε1/2 and the first terms of their Taylor series read as

λ±ε = λ0 + ε1/2λ±1/2 +O(ε), λ±1/2 = ±2
(
−
∫

Γ+

βReψ0 Imψ0 dx1

)1/2
. (1.15)

Let us discuss the results of these theorems. The typical situation of the eigenvalue collision is that two
simple eigenvalues of Hα+εβ converge to the same limiting eigenvalue λ0 of Hα as ε→ 0. Then it is a general fact
from the regular perturbation theory that the algebraic multiplicity of λ0 should be two. The above theorems
address two possible situations. In the first of them the geometric multiplicity of λ0 is two, i.e., there exist two
associated linearly independent eigenfunctions. As we see from Theorem 1.1, in this situation the perturbed
eigenvalues are holomorphic w.r.t. ε and their first terms in the Taylor series are given by (1.7 right). The
numbers λ±1 are some fixed constants and they can be either complex or real. But an important issue is that
here when changing the sign of ε, the eigenvalues can not bifurcate from real line to the complex plane or vice
versa. This fact is implied by (1.7 right), namely, if λ±1 are complex numbers, then λ±ε are also complex for
both ε < 0 and ε > 0. Thus, in this case we do not face the above-mentioned phenomenon of the eigenvalue
collision discovered numerically in [6], [7]. If λ±1 are real, then we need to calculate the next terms of their
Taylor series to see whether they are complex or real. Once all the terms in the Taylor series are real, we deal
with two real eigenvalues which just pass one through the other staying on the real line. Nevertheless, in view of
formulae (1.6) we believe that choosing appropriate β we can get almost any value for the quantity in (1.5). In
a particular interesting case β = α the author does not know a way of identifying the sign of (b11 − b22)2 + 4b212
or proving the reality of the eigenvalues λ±ε .

Theorem 1.2 treats the case when the geometric multiplicity of λ0 is one. Then the Taylor series for the
perturbed eigenvalues are completely different from Theorem 1.1 and here the expansions are made w.r.t. ε1/2.
And the presence of this power perfectly explains the studied phenomenon. Namely, once ε is positive, the same
is true for ε1/2, while for negative ε the square root ε1/2 is pure imaginary. This is exactly what is needed, once
ε changes the sign, real eigenvalues become complex and vice versa. Unfortunately, we cannot even analytically
prove for our model the existence of such eigenvalues. We can just state that once λ0 has geometric multiplicity
one and the associated eigenfunction ψ0 satisfies the identity (ψ0, T ψ0)L2(Ω) = 0, then equation (1.8) is solvable
(see Lemma 2.1). And numerical results in [6], [7] show that this is quite a typical situation.

Our next main result provides another criterion identifying the solvability of equation (1.8)
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Theorem 1.3. Suppose λ0 is a simple eigenvalue of Hα, the associated eigenfunction satisfies the estimate∑
γ∈Z2

+
|γ|62

∣∣∣∂γψ0

∂xγ
(x)
∣∣∣ 6 C

1 + |x1|3
, x ∈ Ω. (1.16)

Then equation (1.8) is solvable if and only if∫
R2
K(x1, y1)

(
α(x1)− α(y1)

)
Reψ0(x1, d) Imψ0(y1, d) dx1 dy1 = 0, (1.17)

where

K(x1, y1) :=
{
x1 if y1 < x1,

−y1 if y1 > x1.

Here ψ0 is chosen so that it satisfies the first identity in (1.11).

Assumption (1.16) is not very restrictive since usually eigenfunctions associated with isolated eigenvalues of
elliptic operators decay exponentially at infinity. The main condition here is (1.17). As we shall show later in
Lemma 2.1, equation (1.8) is solvable if and only if (ψ0, T ψ0)L2(Ω) = 0. And we rewrite this identity to (1.17)
by calculating (ψ0, T ψ0)L2(Ω). The left hand side in (1.17) is simpler in the sense that it involves only boundary
integrals while (ψ0, T ψ0)L2(Ω) is in fact the integral over the whole strip Ω.

2. Proofs of main results
In L2(Ω) we introduce the unitary operator (Uεβf)(x) := e−iεβ(x1)x2f(x). Then it is easy to see that the spectra
of Hα+εβ and U−1

εβ Hα+εβUεβ coincide and

U−1
εβ Hα+εβUεβ = Hα − εLε, (2.1)

Lε := −2iβ′x2
∂

∂x1
− 2iβ ∂

∂x2
− εβ2 − ε(β′)2x2 − iβ′′x2. (2.2)

In the proofs of the main results we shall make use of several auxiliary lemmata.

Lemma 2.1. Under the hypothesis of Theorem 1.2 the equation

(Hα − λ0)u = f (2.3)

is solvable if and only if
(f, T ψ0)L2(Ω) = 0. (2.4)

Under the hypothesis of Theorem 1.1 equation (2.3) is solvable if and only if

(f, T ψ±0 )L2(Ω) = 0. (2.5)

Proof. By (1.3) we see that under the hypotheses of both Theorems 1.1 and 1.2, λ0 is an eigenvalue of H∗α with
the associated eigenfunction(s) T ψ0 or T ψ±0 . Then the lemma follows from [8, Ch. III, Sec. 6.6, Rem. 6.23].

Lemma 2.2. Suppose the hypothesis of Theorem 1.2. Then eigenfunction ψ0 can be chosen so that relations
(1.10), (1.11), and

(ψ0, T ψ0)L2(Ω) = 0 (2.6)

hold true. The functions Reψ0 and Reφ0 are even w.r.t. x2 and Imψ0 and Imφ0 are odd w.r.t. x2.

Proof. Identity (2.6) follows directly from (2.4) applied to equation (1.8). Since λ0 is a real simple eigenvalue
and equation (1.8) has a unique solution satisfying the second identity in (1.10), by (1.2) we have (1.11) and thus
Reψ0 and Reφ0 are even, while Imψ0 and Imφ0 are odd w.r.t. x2. Employing this fact and (1.8), we obtain

(φ0, T ψ0)L2(Ω) = −
∫

Ω
φ0(∆ + λ0)φ0 dx = i

∫
Γ+

αφ2
0 dx1 − i

∫
Γ−

αφ2
0 dx1 +

∫
Ω

((∂φ0

∂x1

)2
+
(∂φ0

∂x2

)2
− λ0φ

2
0

)
dx

= −4
∫

Γ+

αReφ0 Imφ0 dx1 +
∫

Ω

(
|∇Reφ0|2 − |∇ Imφ0|2

)
dx− λ0

∫
Ω

(
|Reφ0|2 − | Imφ0|2

)
dx ∈ R. (2.7)

Hence, multiplying function ψ0 and φ0 by an appropriate constant, we can easily get the first identity in (1.10)
not spoiling other established properties of φ0 and ψ0.
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Lemma 2.3. Suppose the hypothesis of Theorem 1.2. Then for λ close to λ0 the resolvent (Hα − λ)−1 can be
represented as

(Hα − λ)−1 = P−2

(λ− λ0)2 + P−1

λ− λ0
+Rα(λ), (2.8)

P−2 = ψ0`2, P−1 = φ0`2 + ψ0`1, `2f := −(f, T ψ0)L2(Ω), `1f := −
(
f, T (φ0 − ψ0)

)
L2(Ω), (2.9)

where Rα(λ) is the reduced resolvent which is a bounded and holomorphic in the λ operator.

Proof. We know by [8, Ch. III, Sec. 6.5] (see also the remark on space M′(0) in the proof of Theorem 1.7 in [8,
Ch. VII, Sec. 1.3]) that (Hα − λ)−1 can be expanded into the Laurent series

(Hα − λ)−1 =
N∑
n=1

P−n
(λ− λ0)n +Rα(λ),

where N is a fixed number independent of λ, Rα is the reduced resolvent which is a bounded and holomorphic
in λ operator. Given any f ∈ L2(Ω), we then have

u = (Hα − λ)−1f =
N∑
n=1

u−n
(λ− λ0)n +

∞∑
n=0

(λ− λ0)nun.

We substitute this formula into the equation (Hα − λ)u = f and equate the coefficients at the like powers of
(λ− λ0):

(Hα − λ0)u−N = 0, (Hα − λ0)u−k = u−k−1, k = 1, . . . , N − 1,
(Hα − λ0)u0 = f + u−1, (Hα − λ0)u1 = u0. (2.10)

This implies that u−N = ψ0`2f , u−N+1 = φ0`2f + ψ0`1f , where `i are some functionals on L2(Ω). If N > 2,
then by (1.9) and Lemma 2.1 the equation for u−N+2 is unsolvable. Hence, we can assume N = 2. Writing then
the solvability condition (2.4) for equations (2.10) and taking into consideration the identity in (1.10), we arrive
easily to the formula for `2 in (2.9) and

`1f := −(U0, T ψ0)L2(Ω), (2.11)

where U0 is the solution to the equation

(Hα − λ0)U0 = f + ψ0`2f (2.12)

satisfying
(U0, ψ0)L2(Ω) = 0. (2.13)

It follows from (1.3) and (1.8) that

(U0, T ψ0)L2(Ω) =
(
U0, T (Hα − λ0)φ0

)
L2(Ω) =

(
U0, (Hα − λ0)∗T φ0

)
L2(Ω)

=
(
(Hα − λ0)U0, T φ0

)
L2(Ω) = (f + ψ0`2f, T φ0)L2(Ω).

These identities, the above obtained formula for `2, and (2.6), (2.11) imply formula (2.12) for `1.

Lemma 2.4. Suppose the hypothesis of Theorem 1.1. Then for λ close to λ0 the resolvent (Hα − λ)−1 can be
represented as

(Hα − λ)−1 = P−1

λ− λ0
+Rα(λ), (2.14)

P−1 = ψ+
0 `+ + ψ−0 `−, `±f := −(f, T ψ±0 )L2(Ω), (2.15)

where Rα(λ) is the reduced resolvent which is a bounded and holomorphic in λ operator.

The proof of this lemma is similar to that of Lemma 2.3, we just should bear in mind that due to (1.4) and
Lemma 2.1 the equations

(Hα − λ0)u = ψ±0

are unsolvable.
We proceed to the proofs of Theorems 1.1, 1.2, 1.3.
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Proof of Theorem 1.2. The proof is based on the modified version of the Birman-Schwinger principle suggested
in [9] in the form developed in [10]. In view of (2.1), the eigenvalue equation for Hα+εβ is equivalent to the
same equation for Hα − εLε. The latter equation can be written as

(Hα − λε)ψε = εLεψε. (2.16)

We then invert the operator (Hα − λε) by Lemma 2.3 and obtain

ψε = ε
P−2Lεψε
(λε − λ0)2 + ε

P−1Lεψε
λε − λ0

+ εRα(λε)ψε.

By Lemma 2.3 the operator Rα(λ) is bounded uniformly in λ close to λ0 and hence the inverse A(z, ε) :=(
I− εRα(λ0 + z)

)−1 is well-defined and is uniformly bounded for all λ close to λ0 and for all sufficiently small ε.
We apply this operator to the latter equation and get

ψε = ε

z2
ε

A(λ0 + zε, ε)P−2Lεψε + ε

zε
A(λ0 + zε, ε)P−1Lεψε, (2.17)

where we denote zε := λε − λ0. Then we apply functionals `2Lε, `1Lε to the obtained equation and it results in( ε
zε
A11(zε, ε)− 1

)
X1 + ε

z2
ε

(
A11(zε, ε) + zεA12(zε, ε)

)
X2 = 0,

ε

zε
A21(zε, ε)X1 +

( ε
z2
ε

(
A21(zε, ε) + zεA22(zε, ε)

)
− 1
)
X2 = 0, (2.18)

where Xi = `iLεψε, and

Ai1(z, ε) := `iLεA(λ0 + z, ε)ψ0, Ai2(z, ε) := `iLεA(λ0 + z, ε)φ0, i = 1, 2.

The obtained system of equations is linear w.r.t. (X1, X2). We need a non-zero solution to this system since
otherwise by (2.17) we would get ψε = 0 and ψε then cannot be an eigenfunction. System (2.18) has a nonzero
solution if its determinant vanishes. It implies the equation

z2
ε − ε

(
A11(zε, ε) +A22(zε, ε)

)
zε − εA21(zε, ε) + ε2(A11(zε, ε)A22(zε, ε)−A12(zε, ε)A21(zε, ε)

)
= 0,

which is equivalent to the following two
zε = G±(zε, ε1/2), (2.19)

where

G±(z,κ) := κ2(A11(z,κ2) +A22(z,κ2))
2

± κ
(
A21(z,κ2) + κ2

4
(
A11(z,κ2)−A22(z,κ2)

)2 + κ2A12(z,κ2)A21(z,κ2)
)1/2

. (2.20)

Here the branch of the square root is fixed by the restriction 11/2 = 1. It is clear that the functions Aij are
jointly holomorphic w.r.t. sufficiently small z and ε. Moreover, by (2.2)

A21(0, ε) = `2LεA(0, ε)ψ0 = i`2
(
−2β′x2

∂

∂x1
− 2β ∂

∂x2
− β′′x2

)
ψ0 +O(ε). (2.21)

To calculate the first term on the right hand side of this identity, we first observe that by the equation for ψ0 we
have

−
(

2β′x2
∂

∂x1
+ 2β ∂

∂x2
+ β′′x2

)
ψ0 = −(∆ + λ0)βx2ψ0 =: g.

Now we find i`2g by integration by parts

i`2g =
∫

Ω
ψ0(∆ + λ0)βx2ψ0 dx = i

∫
Γ+

(
ψ0

∂

∂x2
βx2ψ0 − βx2ψ0

∂ψ0

∂x2

)
dx1

− i
∫

Γ−

(
ψ0

∂

∂x2
βx2ψ0 − βx2ψ0

∂ψ0

∂x2

)
dx1 = i

∫
Γ+

βψ2
0 dx1 − i

∫
Γ−

βψ2
0 dx1. (2.22)

Together with Lemma 2.2 this implies

i`2g = −4
∫

Γ+

βReψ0 Imψ0 dx1. (2.23)
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Hence, by (2.20), (2.22), (1.12), and the properties of functions Aij we conclude that functions G± are jointly
holomorphic w.r.t. sufficiently small z and κ. Applying the Rouché theorem as in [10, Sec. 4], we conclude
that for all sufficiently small κ each of the functions z 7→ z − G±(z,κ) has a simple zero z±(κ) in a small
neighborhood of the origin. By the implicit function theorem these zeroes are holomorphic w.r.t. κ. Thus, the
desired solutions to equations (2.19) are z±(ε1/2), and these functions are holomorphic w.r.t. ε1/2. Moreover, it
follows from (2.19), (2.20), (2.21), (2.22), (2.23) that

z±(ε1/2) = G±(0, ε1/2) +O(ε) = ±ε1/2A
1/2
21 (0, ε) +O(ε)

and then the sought eigenvalues are λ±ε = λ0 + z±(ε1/2). These eigenvalues are holomorphic w.r.t. ε1/2 and obey
(1.15). Let us prove that these eigenvalues are real as (1.13) holds true and are complex once (1.14) is satisfied.
The latter statement follows easily from formulae (1.15) since in this case ε1/2λ±1/2 are two imaginary numbers.
To prove the reality, as one can easily make sure, it is sufficient to prove that functions G±(z,κ) are real for real
z and κ. Then the existence of a real root is implied easily by the implicit function theorem for real functions.

In view of definition (2.20) of G±, the desired fact is yielded by the similar reality of Aij . Let us prove the
latter.

It follows from Lemma 2.3 that for each f ∈ L2(Ω) the function

Rα(λ)f = (Hα − λ)−1f − P−2f

(λ− λ0)2 −
P−1f

λ− λ0

solves the equation
(Hα − λ)Rα(λ)f = f + ψ0`1f + φ0`2f. (2.24)

Employing definition (2.2) of Lε, we check easily that PT Lε = LεPT . This identity and (1.11), (2.24) yield
that for z ∈ R, κ ∈ R

PT LεA(λ0 + z,κ)ψ0 = LεA(λ0 + z,κ)ψ0, PT LεA(λ0 + z,κ)φ0 = LεA(λ0 + z,κ)φ0.

Using (1.11) once again, for z ∈ R, κ ∈ R we get

A11(z,κ) =
(
PT LεA(λ0 + z,κ)ψ0,Pψ0

)
L2(Ω) =

(
T LεA(λ0 + z,κ)ψ0, T ψ0

)
L2(Ω) = A11(z,κ).

The reality of other functions Aij can be proven in the same way. The proof is complete.

Proof of Theorem 1.1. The main ideas here are the same as in the proof of Theorem 1.2, so, we focus only on
the main milestones. We again begin with (2.1) and invert (Hε − λε) by Lemma 2.2. It leads us to an analogue
of equation (2.17),

ψε = ε

zε
A(λ0 + zε, ε)P−1Lεψε, (2.25)

where operator A is introduced in the same way as above. We then apply functionals `±Lε to this equation( ε
zε
B11(zε, ε)− 1

)
X1 + ε

zε
B12(zε, ε)X2 = 0, ε

zε
B21(zε, ε)X1 +

( ε
zε
B22(zε, ε)− 1

)
X2 = 0, (2.26)

B11(z, ε) := `+LεA(λ0 + z, ε)ψ+
0 , B12(z, ε) := `+LεA(λ0 + z, ε)ψ−0 ,

B21(z, ε) := `−LεA(λ0 + z, ε)ψ+
0 , B22(z, ε) := `−LεA(λ0 + z, ε)ψ−0 .

The determinant of system (2.26) should again vanish and it implies the equation

z2
ε − ε

(
B11(zε, ε) +B22(zε, ε)

)
+ ε2(B11(zε, ε)B22(zε, ε)−B12(zε, ε)B21(zε, ε)

)
= 0,

which splits into other two

zε = Q±(zε, ε), (2.27)

Q±(z, ε) := ε

2
(
B11(zε, ε) +B22(zε, ε)

)
± ε

2
(
(B11(z, ε)−B22(z, ε))2 + 4B12(z, ε)B21(z, ε)

)1/2
.

Here the branch of the square root is fixed by the restriction 11/2 = 1. Let us prove that this square root is
jointly holomorphic w.r.t. z and ε. Integrating by parts as in (2.22) and employing (1.1), one can make easily
sure that

Bii = bii +O(ε), i = 1, 2, B12(0, ε) = b12 +O(ε), B21(0, ε) = b21 +O(ε). (2.28)

Hence, by assumption (1.5), functions Q± are jointly holomorphic w.r.t. z and ε. Proceeding now as in the
proof of Theorem 1.2, we arrive at the statement of Theorem 1.1.
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Proof of Theorem 1.3. Denote
ψ(x) := 1

2

∫ x1

−∞
tψ0(t, x2) dt.

In view of (1.16) this function is well-defined. Throughout the proof we shall deal with several integrals of such
kind and all of them will be well-defined due to (1.16). In what follows we shall not stress this fact anymore.

Employing the equation for ψ0, integrating by parts, and bearing in mind estimates (1.16), we get

(∆ + λ0)ψ = ψ0 + 1
2x1

∂ψ0

∂x1
+ 1

2

∫ x1

−∞
t
( ∂2

∂x2
2

+ λ0

)
ψ0(t, x2) dt = ψ0 + 1

2x1
∂ψ0

∂x1
− 1

2x1

∫ x1

−∞

∂2ψ0

∂x2
1

(t, x2) dt = ψ0.

The proven equation for ψ allows us to integrate once again,∫
Ω
ψ2

0 dx =
∫

Ω
ψ0(∆ + λ0)ψ dx =

∫
Γ+

(
ψ0

∂ψ

∂x2
− ψ∂ψ0

∂x2

)
dx1 −

∫
Γ−

(
ψ0

∂ψ

∂x2
− ψ∂ψ0

∂x2

)
dx1

=
∫

Γ+

ψ0

( ∂ψ
∂x2

+ iαψ
)
dx1 −

∫
Γ−

ψ0

( ∂ψ
∂x2

+ iαψ
)
dx1.

Now we employ identity (1.11) and boundary condition (1.1) for ψ0 to simplify the sum of these integrals,∫
Ω
ψ2

0 dx = −
∫

Γ+

dx1 Reψ0(x1, d)x1

∫ x1

−∞

(
α(x1)− α(y1)

)
Imψ0(y1, d) dy1

−
∫

Γ+

dx1 Imψ0(x1, d)x1

∫ x1

−∞

(
α(x1)− α(y1)

)
Reψ0(y1, d) dy1

= −
∫

Γ+

dx1 Reψ0(x1, d)x1

∫ x1

−∞

(
α(x1)− α(y1)

)
Imψ0(y1, d) dy1

+
∫

Γ+

dx1 Reψ0(x1, d)x1

∫ +∞

x1

(
α(x1)− α(y1)

)
Imψ0(y1, d) dy1

= −
∫
R2
K(x1, y1)

(
α(x1)− α(y1)

)
Reψ0(y1, d) Imψ0(y1, d) dx1 dy1.

By (2.4) we then conclude that equation (1.8) is solvable if and only if identity (1.17) holds true.

Remark 2.5. The idea of the latter proof was borrowed from the proof of Lemma 2.2 in [11], see also proof of
Lemma 3.6 in [10].
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