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Abstract. Streams of gas and dust in the inner parsec of the Galactic center form a distinct
feature known as the Minispiral, which has been studied in radio waveband as well as in the infrared
wavebands. A large fraction of the Minispiral gas is ionized by radiation of OB stars present in the
Nuclear Star Cluster (NSC). Based on the inferred mass in the innermost parsec (∼ 106 solar masses),
over ∼ 103–104 neutron stars should move in the sphere of gravitational influence of the SMBH. We
estimate that a fraction of them propagate through the denser, ionized medium concentrated mainly
along the three arms of the Minispiral. Based on the properties of the gaseous medium, we discuss
different interaction regimes of magnetised neutron stars passing through this region. Moreover, we
sketch expected observational effects of these regimes. The simulation results may be applied to other
galactic nuclei hosting NSC, where the expected distribution of the interaction regimes is different
across different galaxy types.
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1. Introduction
The Galactic center hosts the supermassive black hole
(SMBH) observed as the compact radio source Sgr A*
which is surrounded by the Nuclear star cluster (NSC)
and gaseous-dusty structures, such as HII Minispiral
arms of Sgr A West, supernova remnant Sgr A East,
molecular clouds, and the Circumnuclear disk [1, 2].
It is the closest SMBH and hence its environment
can be studied with the highest resolution among
galactic nuclei in the radio-, mm-, submm-, infrared,
and X-ray wavebands [2]. However, despite high-
resolution multiwavelength studies several processes
are still not satisfactorily explained, such as the star-
formation near the SMBH, the feeding and feedback
of Sgr A*, and the distribution of the magnetic field
and its interaction with other stellar and non-stellar
components.
The observations of the Galactic center region re-

vealed a large population of young massive stars or-
biting the SMBH as close as ∼ 0.1 pc [3]. In fact, the
NSC seems to be one of the densest concentrations
of young massive stars in the Galaxy [1]. On the
other hand, there is an observable flat distribution of
late-type stars with a radius of as much as 10′′ [4, 5].
Thus, a steep relaxed Bahcall-Wolf cusp of stars with
a slope of 7/4 or 3/2 [6, 7] is probably absent [5, 8].
The estimates of the number of stellar remnants

that use the power-law initial mass function (IMF)
(standard Salpeter or top-heavy) combined with the
mass segregation over the age of the bulge (∼ 10 Gyr)

lead to a considerable population of stellar black holes
of the order of ∼ 104 [9, 10]. The same order is ex-
pected for neutron stars based on multiwavelength
statistical studies [11]. Based on the total X-ray lumi-
nosity of the innermost parsec, [12] set an upper limit
on the number of compact remnants (. 40000).
Such an abundant population of neutron stars ex-

hibiting strong magnetic fields could be utilized to
further extend our knowledge about the processes in
the Galactic center. The observations of neutron stars
(pulsars as well as X-ray sources) near the SMBH
would contribute to:
• our understanding of the star formation processes

near the Galactic center using the number and the
age distribution of observed sources,

• mapping the gravitational potential near the SMBH
using their period derivatives,

• constraining the electron density profile in the
Galactic center using their dispersion measures.

Despite continued efforts only very few pulsars have
been detected in the broader Galactic center region.
It is thought that the lack of detections is due to pro-
found interstellar dispersion and scattering. However,
there are observational hints that such a population
is present. [13] report the discovery of two highly
dispersed pulsars with angular separation . 0.3◦ from
the Galactic center. [14] confirm the detection of three
pulsars with large dispersion measures with an offset
of ∼ 10′–15′ from Sgr A*. There is an indication of the
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Figure 1. The distribution of 2302 pulsars in the
XY Galactic plane. Four logarithmic spiral arms
are marked by white lines. Sgr A* and the Sun are
labelled as white points at position (0, 0) kpc and
(0, 7.9) kpc, respectively. The data are taken from
the ATNF Pulsar Catalogue http://www.atnf.csiro.
au/research/pulsar/psrcat [16].

relation between the Sgr A East SNR and the “Can-
nonball” source, which was detected in both the X-ray
and radio wavebands and appears to be a pulsar wind
nebula (PWN) [15]. This shows that neutron stars
can form directly in the Galactic center environment.
In the innermost parsec only one magnetar PSR

J1745-2900 was affirmed by independent detections
[17–19] at a projected distance of ∼ 2.4± 0.3′′ from
Sgr A*, having a period of 3.7635537(2) [20]. The
consequence of the lack of sensitivity to detect more
neutron stars in the Bulge and the Galactic center
is shown in Figure 1, where most of the of detected
sources are concentrated relatively close to the Sun.
In this contribution we aim to clarify the distribu-

tion of the interaction modes of neutron stars in the
Galactic center. Based on the results we discuss the
possibility of detecting neutron stars in the innermost
parsec indirectly, specifically by looking for bow-shock
structures similar to that of the “Cannonball” [15].

The structure of the paper is as follows. In Section 2
we explain the set-up of the model and the methods
that are employed, including the introduction to a
simple, analytical theory of interaction modes of neu-
tron stars that is, however, sufficient for our purposes.
Subsequently, in Section 3 we study the distribution
of interaction modes in the innermost parsec of the
Galaxy. In Section 4 we discuss the consequences
of this distribution and the possibilities of detecting
a fraction of the population indirectly. Finally, we
summarize our conclusions in Section 5.

2. Set-up of the model and
methods

In our model we concentrate on the innermost parsec
of the Galactic center, which lies within the sphere
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Figure 2. The Minispiral model. Top panel: the
nomenclature of the main components. Bottom panel:
Keplerian velocity profile of the gaseous material ac-
cording to [21, 22].

of influence of the supermassive black hole (Sgr A*)
with the radius rSI:

rSI ≈ 1.7
( M•

4.0× 106 M�

)( σ

100 km s−1

)−2
, (1)

where M• is the central black hole mass and σ is the
stellar velocity dispersion.
Since we are studying processes that occur at a

distance of & 1000 gravitational radii from the SMBH
we approximate the gravitational field by a Newtonian
point mass of M• = 4.0× 106 M� [1, 2]. We employ
a Monte Carlo approach for studying the rate of in-
teractions between neutron stars and gaseous-dusty
structures. Initially, we generate the orbits of neutron
stars that do not interact with each other and with
other stellar and non-stellar components of the NSC
except for the SMBH. Hence, the orbital elements of
individual stars do not change in the course of the
simulation. Although this may seem an oversimpli-
fication, it is sufficient for statistical studies of the
distribution of interaction modes.

The thermal HII region of Sgr A West known as the
Minispiral has been studied in the radio-, mm-, and
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infrared wavelengths [21–23]. It consists of four main
components: the Northern Arm, the Western Arc, the
Eastern Arm, and the Bar (see Figure 2) [21–23]. The
Minispiral consists of a mixture of ionised and neutral
gas and dust, with temperature ranging from ∼ 100 K
for dust up to 104 K for the hot ionised gas phase.
The inferred electron densities are ∼ 104–105 cm−3

[21, 22].
In our simplified model the Minispiral is represented

as a system of spherical clumps along the three arms
(∼ 20 for each arm) with the length-scale of each clump
1–2 arcsec. The density and temperature profiles are
taken from [21–23], but we also analyse the interaction
modes for values outside this range. The velocity
profile is assumed to be roughly Keplerian, consisting
of three streams as inferred from observations by [21,
22] (see Figure 2). We note that deviations from
Keplerian motion were also detected, probably due to
magnetohydrodynamic effects [21, 22].

2.1. Interaction modes of magnetized
neutron stars

Many observed neutron stars exhibit considerable mag-
netic fields, in the case of pulsars most frequently of
the order of 1012 Gauss. The warm ionized gas that is
also detected close to the Galactic centre, specifically
in the Sgr A West region (see, e.g., [23] and references
therein) has high electric conductivity that is propor-
tional to its temperature, λc ≈ 107 T

3/2
e cm−1. There-

fore, this plasma must interact effectively with the
large magnetic field of neutron stars. Consequently,
we need magnetohydrodynamic (MHD) equations de-
scribing the gas dynamics in the potential of a neutron
star. In fact, if we are close to the neutron star surface,
we have to solve a system of relativistic magnetohydro-
dynamic equations (RMHD), which is often difficult
for real systems.

In our analysis, we focus on the fundamental char-
acteristics of the interaction of a rotating magnetized
neutron star with the plasma in the surroundings.
This interaction consists of two parts: gravitational
interaction characterized by an accretion rate Ṁ of
the captured medium; and electromagnetic interaction
which is described by a magnetic dipolar moment µ
and by a rotational period of a neutron star P . These
three basic parameters, Ṁ , µ, and P , are further com-
plemented by the mass of neutron star MNS and the
relative velocity with respect to the medium v∞. In
fact, neutron stars are a part of the broader class
of gravimagnetic rotators characterized by mass M ,
angular momentum J = IΩ, and the magnetic field,
which is as the first approximation characterized by
the dipole moment µ.
In order to simplify the problem, we consider the

following assumptions:

(a) the interaction takes place far from the neutron
star surface, so relativistic approach is not neces-
sary,

Figure 3. Sketch of a canonical pulsar. In the lower
right corner, a cross-section of the neutron star is
depicted with two basic components: the crust and
the superfluid neutron interior. Magnetic field lines are
closed up to the light cylinder. Closer to the magnetic
pole, field lines open and relativistic particles escape.

(b) the electromagnetic part of the interaction is in-
dependent of the accretion flux parameters,

(c) the intrinsic magnetic field of neutron stars is a
dipole field.
Let us make a few notes concerning the the as-

sumptions (a), (b), and (c). Point (a) means that the
interaction of interstellar plasma with the magnetic
field or a relativistic particle wind of the neutron star
takes place at r � GMNS/c

2, which is often the case.
Assumption (b) means that infalling plasma does not
distort the intrinsic magnetic field of the neutron star
significantly. Point (c) is approximately valid due
to the conservation of the magnetic flux. The ratio
of the quadrupole q and dipole µ components of the
field scales with the stellar radius as q/µ ∝ R during
the core-collapse, so the field is effectively cleansed of
higher multipole components. The dipole field is the
most representative component far away from the sur-
face, where the interaction with the ambient medium
takes place. The closer to the surface the matter gets,
the more important the quadrupole and the higher
multipole components become.
Given assumptions (a), (b), (c), the problem be-

comes much simpler and many effects of the interac-
tion are thus neglected. However, one still gets basic
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information about the character and the scale of the
interaction if fundamental parameters of the neutron
star and those of the ambient medium are given.

For a non-rotating neutron star, the harmonic sur-
face current j ≈ sin θ induces a dipole field outside
the sphere having the following form:

Bd = 2µ sin θ
r3 er −

µ cos θ
r3 eθ, (2)

where er and eθ are unit vectors, µ denotes the dipole
moment. The angle θ is measured from the axis
perpendicular to the dipole field axis (see the sketch
in Figure 3). The magnetic field magnitude B0 at the
poles is twice as big as at the equator, which follows
from the magnitude relationBd = µ/r3(1+3 sin2 θ)1/2.
The magnetic dipole moment is given by the field
magnitude at the poles B0 and the neutron star radius
RNS, µ = 1/2B0R

3
NS, yielding typical values µ ≈

1/2(2× 1012 Oe)× 1018 cm3 = 1030 Oe cm3.1
In the case of a rotating dipole, the electric com-

ponent of the electromagnetic field also has to be
considered. If the rotational axis of a neutron star is
inclined with respect to the dipole axis by angle α, the
neutron star emits electromagnetic dipole radiation
at rotational frequency Ω. In the frame of this model,
there exists the distance Rl = c/Ω, below which the
electromagnetic field is static and the electric compo-
nent is given by E ≈ v/cB = (Ωr/c)B = (r/Rl)B.
While approaching the radius of the light cylinder,
Rl, the electric component becomes comparable to
the magnetic component. On the crossing of the
light cylinder, the electromagnetic field is no longer
static and it becomes a propagating electromagnetic
wave. The magnetic dipole radiation carries away
energy that may be written in terms of the magnetic
dipole µ,

dErad

dt = 2
3c3µ

2Ω4 sin2 α. (3)

Gaseous environment and possible modes of
accretion. A neutron star is assumed to pass
through an ideally conducting plasma of density ρ∞,
temperature T∞, and the sound speed c∞ at infinity.
We also consider the relative motion of a star with re-
spect to the surrounding medium, v = v?. The plasma
starts falling onto the neutron star, due to its attrac-
tion. In the case of neutron stars with a negligible
magnetic field, the stationary flow of matter, or the
capture rate, is given by the Bondi-Hoyle-Lyttleton
relation (cf., e.g., [24]):

Ṁc = δ
(2GMNS)2

(v2
? + c2

∞)3/2 ρ∞, (4)

where δ is a dimensionless factor of the order of unity.
Defining the capture cross-section σG = δπR2

G, with
RG denoting the capture radius,

RG = 2GMNS

v2
? + c2

∞
, (5)

11Oe is a unit of H field in cgs units. The equivalent in SI
units is 1A/m, 1 A/m = (4π 10−3) Oe.

we may use a convenient form of the capture rate:

Ṁc = σGρ∞v?. (6)

In realistic astrophysical problems, quantities T∞,
ρ∞, and c∞ are taken at finite distances, R� RG.

Possible accretion modes may be divided into three
distinct groups:

• v? � c∞; spherical accretion, without angular mo-
mentum in accreting matter,

• v? � c∞; cylindrical accretion – axially-symmetric
accretion, without angular momentum in the ac-
creting matter,

• the disk accretion, infalling matter has a consider-
able angular momentum.

The following critical radii can be distinguished in
agreement with the terminology of [25].

Stopping radius. Neutron stars as gravimagnetic
rotators attract ionized matter due to gravitational
forces on the one hand, and they prevent accretion due
to electromagnetic forces on the other. In the rotating
dipole model, the electromagnetic field is stationary
inside the light cylinder, Rl = c/Ω, and changes into
a freely propagating electromagnetic wave beyond it.

The luminosity Lm of the magnetic dipole radiation
may be estimated by (3), Lm = dErad/dt. Goldreich
and Julian [26] found out that near the magnetic
axis of the neutron star, which is inclined by a small
angle with respect to the rotational axis, the electric
component is directed along the magnetic field, E ≈
(Ωr/c)B0, and it accelerates charged particles beyond
the light cylinder up to relativistic energies, which
effectively forms a pulsar wind. It is assumed that
this wind becomes frozen in the surrounding medium
and passes its impulse to it.
The pressure of the wind may be estimated as

Pej = Lm/(4πr2vej). However, it may happen that
the accreted plasma penetrates into the region sur-
rounded by the light cylinder. It is prevented from
accretion onto the surface by the pressure of the static
magnetic field, Pm = B2/(8π) = µ2/(8πr6). To sum
up, the pressure of electromagnetic forces is of a dif-
ferent character inside and outside the light cylinder,
and may be approximated by the following relations:

Pm =
{

µ2

8πr6 if r ≤ Rl,
Lm

4πr2c if r > Rl.
(7)

Using the light cylinder radius, Rl, we may rewrite
the dipole radiation luminosity of the neutron star
Lm, (3), into the form:

Lm = κt
µ2

R3
l

Ω, (8)

where κt = 2/3 sin2 α is a dimensionless factor. Using
(8), the electromagnetic pressure acting on the sur-
rounding gas expressed by (7) may be rewritten into
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Figure 4. Left panel: the pressure exerted by a stationary magnetic field varies as ∼ r−6, whereas outside the
light cylinder the pressure of relativistic particles that act on infalling plasma falls off with distance as ∼ r−2. The
distance is expressed in light radii (Rl). Right panel: the pressure caused by accreted plasma is approximately
constant beyond the gravitational capture radius, whereas for smaller radii gas falls freely and the pressure increases
as ∼ r−5/2 while approaching the star. The units are expressed in gravitational capture radii (RG).

the following relations:

Pm =
{

µ2

8πr6 if r ≤ Rl,
κtµ

2

4πR4
l r

2 if r > Rl.
(9)

Electromagnetic pressure Pm is continuous for κt =
1/2 at r = Rl.

Matter being accreted onto the neutron star ex-
erts pressure, which is approximately constant beyond
the gravitational capture radius RG and is equal to
1/2ρ∞v2

?. For radii smaller than capture radius RG,
matter falls almost freely and exerts dynamic pres-
sure 1/2ρ(r)v(r)2. Under the assumption of spher-
ical accretion, Ṁc = 4πr2ρ(r)v(r), which becomes
Ṁc = 4πR2

Gρ∞v? beyond the capture radius, the ac-
cretion pressure Pa can be estimated as follows:

Pa =
{
Ṁcv?

8πR2
G

if r > RG,

Ṁcv?

8πr2

(
RG
r

)1/2 if r ≤ RG.
(10)

The accretion pressure is a continuous function ac-
cording to (10).

Both the electromagnetic pressure Pm and the accre-
tion pressure Pa as functions of distance are plotted in
Figure 4 for the following set of parameters: P = 1 s,
B0 = 2 × 1012 G, R0 = 106 cm, nH = 104 cm−3,
Te = 6× 103 K, MNS = 1.4M�, v? = 100 km s−1.
The plasma being accreted by a neutron star is

halted at the stopping radius where the pressure of the
electromagnetic forces is in balance with the pressure
of the accreted matter. The stopping radius may be
derived from the following condition:

Pm = Pa. (11)

If the pressure of electromagnetic forces is repre-
sented by the pressure of a static dipole field, then (11)
yields the Alfvén radius, RA. If the electromagnetic
pressure Pm is related to the outflow of relativistic
particles (pulsar wind), then the corresponding radius

is the so-called Shvartsman radius, RSh. The stopping
radius may therefore be expressed as [25]:

Rst =
{
RA if Rst ≤ Rl,

RSh if Rst > Rl.
(12)

For the case when Rst ≤ Rl, the Alfvén radius is
given by the corresponding relations in (9) and (10),
so again we get two cases for distances larger or smaller
than the capture radius RG:

RA =


( 4µ2G2M2

NS
Ṁcv5

?

)1/6 if RA > RG,(
µ2

Ṁc(2GMNS)1/2

)2/7 if RA ≤ RG.
(13)

For Rst > Rl, the relativistic pulsar wind interacts
with the accreted matter. By comparing the depen-
dencies in Figure 4, we see that the accretion pressure
increases as ∼ r−5/2 for Rst ≤ RG and thus more
rapidly than the pressure of the pulsar wind, which
decreases as ∼ r−2. Hence, for Rst ≤ RG, no stable
cavern can be maintained by the ejection of matter.
However, using (9) for r > Rl and (10) for r > RG, we
may find the stopping radius for distances Rst > RG.
This radius is also known as the Shvartsman radius
and may be expressed in the following way:

RSh =
(

2Lej

Ṁcv?vej

)1/2
RG,

RSh =
(

8κtµ
2(GMNS)2Ω4

Ṁcv5
?c

4

)1/2
if vej = c. (14)

Let us note that the relations (13) and (14) are valid
for accretion rates below the Eddington limit for accre-
tion, GṀcMNS/Rst < LEdd. The supercritical regime
occurs in disk accretion modes that do not develop
when neutron stars are just passing through an ionized
plasma medium that has low angular momentum.

Corotation radius. The corotation radius of a ro-
tating neutron star is another important distance scale.
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Name Notation Relation between distances Observational effects
Ejector E Rst > max{RG,Rl} radiopulsars
Propeller P Rc < Rst ≤ max{RG,Rl} spinning-down more efficient, transient sources
Accretor A Rst ≤ RG and Rst ≤ Rc X-ray pulsars, X-ray bursters

Table 1. Summary of the interaction modes and the types of neutron stars that appear to be relevant in different
regimes within the environment of the Minispiral.

Figure 5. Illustrations of basic interaction modes of magnetized neutron stars with the surrounding environment:
ejector, propeller, accretor.

If accreting plasma penetrates beyond the light cylin-
der, it is stopped at the Alfvén radius, Rst ≈ RA,
where the plasma pressure and the pressure of the
static magnetic field are in balance. Further evolution
of stopped plasma is given by the rotational velocity
of the neutron star. Let us assume that the plasma
becomes frozen at Rst in the magnetic field and coro-
tates with it at the angular velocity of the neutron
star, Ω. The plasma clump will eventually reach the
surface of the neutron star if the rotational velocity at
the stopping radius Rst is smaller than the Keplerian
velocity at the same distance:

ΩRst <

(
GMNS

Rst

)1/2
. (15)

However, if the condition (15) is not met, a centrifugal
barrier develops that prevents plasma from accreting
further. The critical, corotation radius Rc that sepa-
rates the two modes is given by the equality in (15):

Rc =
(
GMNS

Ω2

)1/3
. (16)

If Rst < Rc, rotation does not considerably effect
the accretion flux. If Rst ≥ Rc, stationary accretion
is not allowed.

Interaction modes. The mode of interaction of
magnetized rotating neutron stars and also other grav-
imagnetic rotators is given by the relations between
four fundamental distance scales: stopping radius Rst,
light cylinder radius Rl, gravitational capture radius
RG and corotation radius Rc. Elementary combina-
torics yields 4! = 24 possible relations between these

Quantity µ σ

logP −0.2188 0.3488
logB 12.0900 0.4711

Table 2. Parameters of the synthetic distribution of
the period (in seconds) and the synthetic distribution
of the surface magnetic field (in Gauss).

radii. However, when taking astrophysics into consid-
eration, we get just a few modes. For example, Rl is
always greater than Rc. We do not take supercritical
regimes into account in our analysis, since they occur
in systems with disk accretion, and binary systems are
also not considered. The classification of three main
interaction modes — ejector (E), propeller (P), and
accretor (A) — and thus types of neutron stars ac-
cording to [25] is summarized in Table 1. The sketches
of these basic regimes are shown in Figure 5.

3. Results: Distribution of
interaction modes in the
Galactic center

In our Monte Carlo simulations we produce a suffi-
ciently large synthetic population of neutron stars.
The number of members of this population is of the
order of 104–106. As a nominal distribution of period
logP and surface dipole magnetic field logB we take
the Gaussian fit of the main peak of the observed
distributions in the catalogue by [16]

N(logP ) ∝ exp
(
− (logP − µP )2

2σ2
P

)
,

N(logB) ∝ exp
(
− (logB − µB)2

2σ2
B

)
, (17)
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Figure 6. Histograms of the relative distribution of interaction modes of neutron stars in the Galactic center. The
relative number is in the logarithmic scale. Top left panel: the distribution of interaction modes of the neutron stars
that interact with the ionized gas in the Minispiral region. Three basic modes are monitored: ejector (E), propeller
(P), and accretor (A). The distribution alters significantly as the density increases. The temperature is fixed at
T e = 6 × 103 K. Top right panel: the distribution of interaction modes for the fixed density of ne = 5 × 104 cm−3.
We vary the temperature according to the description in the plot. Only two modes, ejector and propeller, are present.
The relative number of ejector modes increases (0.9187, 0.9189, 0.9191, 0.9192, 0.9192, 0.9196) with the increasing
temperature. Bottom left panel: distribution of interaction modes of neutron stars passing through the Minispiral
for four different distributions: (1) Gaussian, (2) broader Gaussian, (3) uniform distribution, and (4) combined
distribution: Gaussian + uniform. Parameters of individual distributions are summarized in Table 3. Bottom right
panel: distribution of interaction modes of neutron stars for an increasing distance from the Galactic center. The
magnetic field and period of neutron stars are distributed according to the combined distribution (4) in Table 3.

where µP and µB are mean values of the Gaussian
distribution and σ2

P and σ2
B are the corresponding vari-

ances. The values of the period and surface magnetic
field are independently attributed to each neutron star
according to the distribution with the parameters in
Table 2.

First, we fix the mean temperature of the ionized
gas, T e = 6 × 103 K. The density is continually
increased by an order of magnitude, starting with
104 cm−3; we consider densities up to 109 cm−3.

Neutron stars are distributed uniformly in the space
of orbital elements, having a uniform distribution of
the logarithm of semi-major axis, (0.05, 1.00) pc, eccen-
tricity, (0.0, 1.0), and the cosine of inclination, (−1, 1).
The number of interactions with the Minispiral arms
per unit of time is ∼ 1–10 %, depending on the length-
scale of individual clumps, 1–2 arcsec, respectively.
Thus, for an expected size of the population ∼ 104,

about 100 to 1000 members may interact with the
ionized gas of the Minispiral.
Furthermore, the occurrence of interaction modes

(E, P, A) is investigated according to the classification
in Table 1. We summarize the results via a series of
histograms in Figure 6 (Top left panel). It is obvious
that for typical densities in the Sgr A West region
inferred from observations (104–105 cm−3, see [22, 23])
ejector mode is predominant (& 90 %); for larger den-
sities the fraction of propeller neutron stars increases
and at ∼ 107 cm−3 it is approximately the same as
the fraction of ejectors and starts to prevail for higher
densities, at which the accretor regime also becomes
more prominent. This behaviour can be explained by
the dependence of the stopping radius, see (13) and
(14), on the accretion rate: for higher densities, Ṁc
increases and the stopping radius decreases. Thus, we
naturally obtain a larger fraction of propellers and
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Number Distribution type Parameters
1 Gaussian µP = −0.2188, σP = 0.3488

µB = 12.0900, σB = 0.4711
2 Gaussian µP = −0.2178, σP = 0.7019

µB = 12.0888, σB = 0.85098
3 Uniform logPmin = −3, logPmax = 2

logBmin = 7, logBmax = 15
4 Combined µP = −0.2189, σP = 0.3478

µB = 12.09, σB = 0.47
logPmin = −3, logPmax = 2
logBmin = 7, logBmax = 15

Table 3. Distributions of the period and the maximum surface intensity of the dipole magnetic field of neutron stars
considered in our work.

accretors for higher densities. Such densities may hy-
pothetically be found in cold, obscured regions of the
Minispiral [27], in the Circumnuclear disk [1, 2], and
in dense gaseous-dusty tori and disks of AGN.
Second, we perform the simulation run with fixed

density ne = 5×104 cm−3. The parameters related to
the magnetic field and period distributions are kept
as before. The electron temperature is varied from
1000 K to 60000 K. We just make a note that the
motivation for these density and temperature varia-
tions comes from the fact that the Minispiral consists
of several streams and clumps of different properties
that coexist [23]. After several runs we find that
the distribution of the interaction regimes does not
vary significantly: ejectors constitute & 92 % and pro-
pellers . 8 % of those neutron stars that collide with
the streams, see Figure 6 (Top right panel). For higher
temperature the accretion rate Ṁc drops and the stop-
ping radius increases, see (13) and (14). Hence, the
number of propellers decreases whereas ejectors are
more abundant. However, the dependence of distri-
bution on temperature is rather weak. No accretors
appear since we keep the density at 5 × 103 cm−3

(compare also with Figure 6 – Top left panel).
Moreover, we study the distribution of the interac-

tion regimes of neutron stars for stratified Minispi-
ral clumps and different distributions. To this end,
we implement clumps with a variable density pro-
file. They consist of four concentric shells with the
corresponding outer radii rN = (1/2)N−1 × 0.08 pc,
N ∈ [1, 2, 3, 4]. The number density increases towards
the center, starting with 104 cm−3 up to 107 cm−3,
increasing inwards by one order of magnitude for each
concentric shell. The temperature is set at the mean
value of T e = 6000 K. This scheme ensures that most
of the gaseous medium has number densities in the
range (104, 105) cm−3, which in agreement with radio
and infrared observations.

We analyse the interaction modes for four different
distributions whose types and parameters are summa-
rized in Table 3. Distribution (1) is inferred from the
Gaussian fit of the main peak of both the period and

the magnetic field distributions of observed neutron
stars [16]. Distribution (2) is a broader Gaussian distri-
bution, (3) is a uniform distribution across a large span
of values: B ∈ (107, 1015) G and P ∈ (10−3, 102) s.
Distribution (4) is a combined distribution of (1) and
(3), where (3) uniformly fills an ellipse in PB plane
that satisfies the following condition,

(logP − µP)2

s2
P

+ (logB0 − µB)2

s2
B

≤ 1,

where sP and sB are the corresponding semi-major
axes:

sP = (logPmax − logPmin)/2,
sB = (logBmax − logBmin)/2.

We perform Monte Carlo simulations with the dis-
tribution of the orbital elements of neutron stars as de-
scribed before. The results of the study of the modes of
neutron stars that interact with the Minispiral are pre-
sented in Figure 6 (Bottom left panel). In the case of
distribution (1), the ejector mode dominates, whereas
the propeller and the accretor modes are represented
by small amounts, (E;P ;A) ≈ (95.4; 4.6; 2× 10−3) %.
For the broader Gaussian distribution (2), the ejector
mode decreases, whereas the propeller and the accre-
tor modes increase in comparison with the distribution
(1), (E;P ;A) ≈ (81.9; 17.8; 0.3) %. This trend contin-
ues in the case of uniform distribution (3), for which
the accretor mode rises considerably, (E;P ;A) ≈
(60.2; 20.3; 19.5) %. Finally, the combined distribu-
tion (4) with a Gaussian peak results in the dominant
ejector mode again, (E;P ;A) ≈ (82.3; 13.4; 4.3) %. In
all studied cases the ejector mode dominates (& 60 %).
However, the distribution of the interaction modes
is very sensitive to the internal properties of neutron
stars (surface magnetic field and period), which evolve
with time. The purpose of the four discussed distri-
butions of the period and magnetic field is to show
general trends; more detailed studies based on the
age distribution of stars in the Galactic center are
required to constrain the distribution further.
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Figure 7. The uniform distribution of interacting
neutron stars in the PB plane. Interaction modes
are color-coded: ejector–red, propeller–green, and
accretor–blue. Two white lines mark the death lines,
below which pulsating neutron stars turn off.

Finally, we study the change in the distribution of
interaction regimes with increasing distance from the
Galactic center. We use the combined distribution
(4) of the period and magnetic field to analyse the
general behaviour, see Figure 6 (bottom right panel).
The greater the distance, the smaller the abundance
of ejectors is, whereas the number of propellers and
accretors increases. This is due to the fact that the
relative velocity between stars and gaseous clumps de-
creases for a larger distance, which implies an increase
in the capture rate Ṁc, see (4). This is translated into
shrinkage of the stopping sphere, according to (13)
and (14). Hence, there is a higher probability that
the gravitational capture radius and also the light
radius become larger than the stopping radius, which
favours the onset of the propeller and accretor stage,
see Table 1.

Distribution of interaction modes in the PB
plane. It is useful to plot the interaction modes of
neutron stars passing through the ionized Minispiral
region in the PB plane (period-magnetic field). We
plot such a map for a uniform distribution (3; see
Table 3) and distinguish individual regimes by colour:
ejector – red, propeller – green, and accretor – blue.
The points in the PB plane where multiple modes
occur are marked by shades of these colours according
to the probability of occurrence of particular regimes.
The PB plane is divided by a pair of death lines,

B ≈ 2.5 × 1010 P 2 (G) and B ≈ 3.1 × 1010 P 3/2 (G).
Above these lines, electron-positron pairs can be pro-
duced in strong magnetic fields, and the pulsars are
active, whereas below these lines pair production no
longer proceeds and pulsars are turned off [28]. The
ejector mode dominates the region above these lines,
the accretor stage prevails below them, and the pro-
peller mode occurs in the vicinity of these lines, see
Figure 7.

Figure 8. The relative velocity of interacting neutron
stars with respect to the Minispiral streams versus the
semi-major axes of neutron stars. Red points label
the interactions with the Northern Arm, green points
stand for the Eastern Arm, and blue points represent
passages through the Western Arc.

4. Discussion
Let us briefly discuss plausible observable conse-
quences of the results presented here.

Ejectors manifest themselves mainly as radiopulsars.
The predicted number of neutron stars in the central
parsec of the Galactic centre is ∼ 104; the expected
fraction of ejectors is ∼ 90 % (see Figure 6) assuming
that the dominant population of neutron stars is the
same as is observed in the disk population. This
fraction could be decreased if the population of old,
isolated accreting neutron stars is more prominent.
One should be aware of the fact that pulsars stay
active for a certain amount of time, which can be
approximated as τ ≈ 100 Myr, when they reach the
death lines and turn off, see Fig. 7. Around the death
lines they become propellers and with further spin-
down and magnetic field decay they start to accrete
interstellar matter.
We take the beaming fraction of the ejectors fb =

0.2 [29], i.e. pulsars that are expected to beam towards
us, so potentially ∼ 1800 pulsars could be detectable
with sufficient sensitivity. However, there is an ap-
parent lack of pulsar detections in the Galactic centre
region. The pulsar searches in the Galactic disk are
generally affected by high background temperature,
which increases the minimum detectable flux. More-
over, all observations pointed toward the Galactic cen-
tre region suffer from interstellar scattering resulting
from turbulent plasma, which causes temporal broad-
ening of the pulses to ∼ 2000ν−4

GHz s [30] (νGHz is the
observing frequency in GHz). At usual observing fre-
quencies ∼ 1 GHz it is not possible to detect even long-
period pulsars and the surveys have to increase the
frequency to ∼ 10 GHz. However, since pulsars have
spectral energy distribution in the power-law form
Sν ∝ να, where α < 0, the flux decreases for higher
frequencies. To sum up, the lack of observed radiopul-
sars in the Galactic centre may be explained by the
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Figure 9. Exemplary simulated distribution of bow-shock sizes associated with neutron stars according to Gaussian
distribution (1) in Table 3. Left panel: histogram of bow-shock sizes. The green histogram represents propeller
bow-shocks with rather small characteristic length-scales that are beyond the detection limit. Right panel: comparison
of bow-shock sizes in the simulated 20′′ × 20′′ image of the Minispiral. The ejector bow-shocks (red circles) are
artificially enlarged by a factor of 100 and propeller bow-shocks are enlarged 105-times for clarity. The elliptical
orbits of selected S-stars are also plotted for illustration.

low sensitivity of current observing facilities. A major
breakthrough is expected to come with Square Kilome-
tre Array–SKA project [31], which will provide much
higher sensitivity than current instruments.Mapping
the close vicinity of Sgr A* will be the task of the
Event Horizon Telescope–EHT [32], which may detect
pulsars strongly bound to the supermassive black hole
and the data could the be used to put the theory of
general relativity to very precise tests.
Another way to detect ejectors–pulsars is to look

for the cavities, pulsar wind nebulae (PWN), and
bow-shock structures formed when supersonic eject-
ing neutron stars emitting relativistic wind propagate
through the denser medium of the Minispiral. For
the average electron temperature of the plasma in
the Minispiral region, T e ≈ 6× 103 K [22], the speed
of sound is cs ≈ (kT e/mH)1/2 ≈ 7 km s−1. Accord-
ing to Fig. 8 of the semi-major axis–relative velocity
plot, typical relative velocities of neutron stars that
encounter the high-density gas of the Minispiral are
greather than the speed of sound of the interstellar
medium by one–two orders of magnitude. Hence, the
motion is generally supersonic and bow-shock struc-
tures associated with neutron stars potentially form
in the Minispiral arms. The size of such a cavity is
determined by the energy input, Ė ≈ −Ėrot = −IΩΩ̇,
from the central ejector, and also by the structure
and the properties of the surrounding medium. The
velocity of the pulsar vrel with respect to the ambient
medium also influences the size and the orientation of
the bow-shock structure. Along the relative velocity
vrel, the pressure of the wind of the ejector and the
ram pressure of the ISM are in balance at the contact
discontinuity.

The distance of the contact discontinuity from the
central ejector is given by the stand-off distance (see,
e.g., [33]):

rbs =
(

Ė

4πcρav2
rel

)1/2
, (18)

where the density of the ambient medium (the Min-
ispiral) is ρa ≈ mHnH, and we adopt the values from
[22, 23]; the major part of the Minispiral gaseous
clumps has nH ≈ 104–105 cm−3, with the core of each
clump of 107 cm−3. Equation (18) describes the char-
acteristic size of both the bow-shock associated with
a fast neutron star and the pulsar wind nebula, i.e.
the distance of the contact discontinuity from the
central pulsar. In the case of PWN, the termination
shock is characterized by concentric tori and jets, as
is observed in the Crab nebula, for example.

We compute the typical sizes of bow shocks and/or
PWN for an ensemble of 104 neutron stars using (18)
and the assumption that the Gaussian distribution
in Table 3, 1st line, is approximately valid for the
Galactic center population. Assuming that & 90 % of
interacting pulsars are ejectors, about one thousand
(in our exemplary runs ∼ 1500) bow-shock structures
could be present along the Minispiral arms. However,
most of them are rather small (< 1 mas) and are there-
fore below the detection limit. Propeller bow shocks
are all below ∼ 0.01 mas, whereas the bow-shock struc-
tures of ejectors have sizes above this value and up to
∼ 10 mas, see Fig. 9 (Left panel) for comparison; the
values along the horizontal axis are decadic logarithms
of stand-off radii in milliarcseconds.
The number of larger bow-shock structures (&

1 mas) is ∼ 30 for ∼ 1500 neutron stars that interact
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with the Minispiral out of ∼ 104 neutron stars that oc-
cupy the innermost parsec. However, ∼ 10 of them are
greather than 10 mas. Fig. 9 (Right panel) compareis
of their sizes with the whole Minispiral structure as
seen from the Earth for an exemplary simulation.
In addition, neutron stars are expected to occur

closer to the SMBH where relativistic effects could
be detected. They may be members of the S-cluster,
where they were originally locked in binary systems
with hot stars. Close pericenter passages can, however,
disrupt such binary systems due to triple scattering.
The components become separated, and for a certain
set of orbital parameters, one component can escape
the system on a hyperbolic orbit (see [34] for details).
These hypervelocity neutron stars could potentially
be seen to interact with the gaseous environment of
Sgr A West and further away.

The HII region of Sgr A West, especially the dense
Minispiral arms and the bar, seem to be a promising
target to search for the effects of interaction with pass-
ing compact objects both for the number of encounters
and for the observable effects. Due to its large size,
the Minispiral appears to be a more favourable target
for detectiing the manifestation of the neutron star
population than an isolated clump, such as G2/DSO
currently observed in the Galactic center [35].

5. Conclusions
We have studied the distribution of interaction modes
of the neutron star population in the Galactic cen-
ter. We have explained that the established mode of
interaction depends on the intrinsic properties of a
neutron star (the rotational period and the magnetic
dipole surface intensity) and the external conditions
(parameters of the gaseous medium: density and tem-
perature).

We focused on the distribution of three main inter-
action regimes of neutron stars: ejector (E), propeller
(P), and accretor (A). We found that the distribution
of the modes is strongly dependent on the plasma
density, where it is only weakly dependent on tem-
perature in the range ∼ (103, 104) K. This further
implies that the distribution varies across different
galaxy types.

We went on propose an alternative way to look for
ejecting neutron stars in the Galactic center. One
can look for the signatures of the interaction of neu-
tron stars with the dense Minispiral arms. Common
structures associated with the supersonic motion of
pulsars are bow-shocks. Our analysis shows that the
number of relatively large structures in this region,
& 10 mas, can be of the order of ∼ 10. However, we
stress that the results depend on the assumed dis-
tribution of the rotational periods and the surface
magnetic fields. The comparison of different synthetic
distributions of bow-shock sizes with the observed
structures will help to constrain the parameters of
the Galactic center population of young neutron stars.

These bow-shocks are expected to be sources of polar-
ized non-thermal radiation, possibly detectable in the
X-ray, infrared, and radio wavelengths. Several cases
of such comet-shaped sources are indeed observed in
this region [15, 36]. Further analysis is required to
strengthen or reject their association with propagating
neutron stars. In our upcoming paper we will further
explore the observability of these features (Zajaček et
al., in preparation).
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