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Abstract. The L–H transition in magnetic confinement plasmas is investigated on the basis of
concepts of two-field bifurcation and fixed-point stability. A set of heat and particle transport equations
with both neoclassical and anomalous effects included is used to study ETB formation and also pedestal
width and dynamics. It is found that plasmas can exhibit bifurcation where a sudden jump in the
gradients can be achieved at the transition point corresponding to the critical flux. Furthermore, it is
found that the transport barrier expands inward, whereby the radial growth of the pedestal initially
appears to be superdiffusive but later slows down and stops. In addition, the time of barrier expansion
is found to be much longer than the time that plasma takes to evolve from L-mode to H-mode. A
sensitivity study is also performed, in which the barrier width is found to be sensitive to various
parameters, e.g. heating, transport coefficients and suppression strength.
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1. Introduction
Experimental observations in various magnetic confine-
ment fusion devices have revealed that the formation
of an edge transport barrier (ETB) results in a sudden
transition from low-confinement mode (L-mode) to
high-confinement mode (H-mode) with great improve-
ment in plasma performance [1]. This improvement
is necessary for future nuclear fusion machines, such
as ITER [2]. Understanding the physics of the L–H
transition [3] is still a key issue in fusion research. Ex-
perimentally, plasmas make the transition to H-mode
when the injected heat exceeds a threshold marked
by the formation of a transport barrier located near
the edge of the plasma with a relatively high gradient
profile (pressure/density) [4]. Consequently, the core
profile rises, resulting in enhanced fusion performance.
It is therefore crucial to be able to explain the phys-
ical mechanisms of transport barrier formation and
dynamics.
Although the underlying physics of the L–H tran-

sition is still unclear, many hypotheses have been
put forward based on the concept of suppression of
the turbulent transport by the flow shear or/and the
magnetic shear [5]. It is known that turbulent trans-
port can be stabilized by flow shear because of the
breaking of a convection cell [6]. Experimental results
support the idea that turbulent fluxes can be reduced
or quenched by a sheared flow in the transport barrier
region [5, 7]. Consequently, an ETB is formed and
the plasma makes an abrupt transition from L-mode
to H-mode.

Some earlier research based on bistable s-curve bifur-
cation models [8–15] provided insights into qualitative
aspects, and also into L–H transition physics. These

works described the L–H transition using an s-curve
graph in nonlinear flux versus a gradient space with
both stable and unstable branches. The bifurcation
model was introduced to explain particle and energy
confinement in tokamaks [9]. Ref. [11] utilized a simple
one-field bifurcation model to portray the spatiotem-
poral behavior of the plasma, and found the hysteresis
loop. Malkov and Diamond later applied this concept
to analyze coupled heat and particle transport equa-
tions simultaneously, and illustrated that when the
hyper-diffusion effect is included, the transition follows
Maxwell’s rule [12]. Recently, the model has included
heat and momentum density transports for an ana-
lytical study of the impact of external torque on the
formation of an internal transport barrier (ITB) [13].
Different tasks can also be taken. For example, in [14],
bifurcation theory was used to explain the transition
and also the dithering H-mode.
This work attempts to reveal the fundamentals of

the L–H transition via a simple model of bifurcation
approach, which could describe an overall view of the
intrinsic bi-stability of the plasma. The variation of
the system state, indicated as the pressure gradient
with respect to a control parameter such as the heat
flux, exhibits an s-curve shape. Intrinsic behaviours
of ETB, including its dynamics and width, are also
investigated. The study is therefore based on the
assumption of an ELM-free plasma, i.e. any gradient-
limit instability is neglected in order to study the
growth or the expansion of a transport barrier.

This paper is organized as follows: brief descriptions
of bifurcation and fixed-point concepts are presented
in Section 2; numerical results of the L–H transition
and pedestal analysis are illustrated in Section 3; and
conclusions are presented in Section 4.

215

http://dx.doi.org/10.14311/AP.2015.55.0215
http://ojs.cvut.cz/ojs/index.php/ap


Boonnyarit Chatthong, Thawatchai Onjun Acta Polytechnica

2. Bifurcation model and
fixed-point analysis

This section introduces the bifurcation model, and
presents a conceptual and visual discussion of the
local stability of a plasma and the dynamics of the
L–H transition, as well as its locations in the bifur-
cation diagram. A simplified version of the heat and
particle transport equations, in slab geometry, can be
expressed, respectively, in the form:
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− ∂
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where p is plasma pressure, n is plasma density, χneo
and Dneo represent the neoclassical transport coeffi-
cients, χano and Dano represent the anomalous trans-
port coefficients, ν′

E is the flow shear suppression, α
is a positive constant representing the strength of the
suppression, and H and S are the thermal and particle
sources, localized at the center and at the edge of the
plasma, respectively. The formation of an ETB is a
result of anomalous transport reduction caused by the
flow shear effect [16]. Hence, the main ingredient for
stabilizing the anomalous transport is the flow shear,
which accounts for the known reduction of the turbu-
lent transport by a sheared radial electric field [6]. It
couples the two transport equations according to the
force balance equation, as shown in [12]:

ν′
E = c

E′
r

B
≈ − c

eBn2 p
′n′. (3)

Note that the contributions of the curvature, the
toroidal and poloidal rotation are neglected here.
Equations (1) and (2) can be rewritten as the time
variation of the pressure and density as:
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where gp ≡ −p′ and gn ≡ n′. Integrations of these
two equations with respect to x yield the followings:
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where Q =
∫
H dx and Γ =

∫
S dx are the heat

and particle fluxes given to the plasma. These two
equations represent the time variation flow of en-
ergy and particle contents through a flux surface
withẇ = ∂w/∂t and η̇ = ∂η/∂t defined as follows:∫

p dx =
∑
i

pi∆xi =
∑
i

Fi
Ai

∆xi =
∑
i

Wi

Ai

=
∑
i

wi ≡ w, (8)

∫
ndx =

∑
i

ni∆xi =
∑
i

Ni
Vi

∆xi =
∑
i

Ni
Ai

=
∑
i

ηi ≡ η, (9)

where Fi is the total force acting on a flux surface area
Ai due to the plasma pressure pi, Wi is the work done
by the pressure, w is total work done per surface area
or the energy density of the plasma within the flux
surface, and η is the particle surface density of the
plasma. These are first-order nonlinear differential
equations of the thermal and particle transport equa-
tion. They are coupled through the shear term of (3).
In the transient limit ẇ = η̇ ∼= 0, a simple decoupling
technique can be applied asDanogn×(6)−χanogp×(7),
resulting in:

gn = Γχanogp
QDano +Dneoχanogp − χneoDanogp

. (10)

This can be substituted in (6) to decouple the two
fields.
From this point on, the analysis is based on the

heat transport equation for the L–H transition. A
similar discussion can be carried out for the particle
transport equation, as [17] has shown that there exist
both heating power and density thresholds for the
L–H transition. Physically, (6) represents the change
of the energy density with time. It depends on both
the heat flux and the pressure gradient. This can
be seen in Figure 1, where each panel illustrates a
ẇ versus gp diagram (or η̇ versus gn for the particle
field) based on various Q values (or Γ). Note that all
the constants are arbitrarily chosen in this work, so
quantitative values have no physical meaning. With
respect to time evolution, different behaviours can
happen to a local plasma gradient point on this figure.
Firstly, in the regions where ẇ > 0 (η̇ > 0), the
pressure gradient (density gradient) increases with
time (rightwards arrow) because the plasma energy
(density) increases. Secondly, in the regions where
ẇ < 0 (η̇ < 0), the pressure gradient (density gradient)
decreases with time (leftwards arrow) because the
plasma energy (density) decreases. Lastly, if the point
lies at ẇ = 0 (η̇ = 0), implying that it is in equilibrium,
the gradients do not change; such points are called
fixed points.

These three behaviours of the local plasma gradients
allow possibility to analyze the stability properties of
the plasma. Panel (a) of Figure 1 shows the curve at
relatively low fluxes value. Apparently, only one stable
fixed point can be observed at a relatively low pressure
gradient, because any deviation from it will bring it
back, as shown by the arrows. Panel (b) shows the
case where the fluxes reach their first critical values
(Q1,crit and Γ1,crit), another half-stable fixed point
appears. At higher fluxes, as shown in panel (c), the
new fixed point splits into two fixed points, making
total of three fixed points: two stable and one unstable.
Panel (d) shows the case where the fluxes are equal to
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Figure 1. Fixed points for each heat/particle flux value and their stabilities: a solid dot for stable fixed points, an
open dot for unstable fixed points, and a semi-open dot for semi-stable fixed points.

the second critical values (Q2,crit and Γ2,crit), the two
fixed points on the left merge to a single half-stable
point. Panel (e) shows the case where the second
critical fluxes are exceeded, the half-stable point is
destroyed, so only one stable point at relatively high
gradients exists.
Dynamics of local gradients can be described us-

ing a graphical interpretation. The stability analysis
method can lead to understanding of the L–H forward
transition and the H–L back transition. In particu-
lar, the fluxes can be treated as independent variable,
which can be changed. As they are increased or de-

creased, the qualitative behaviour, e.g. the stability of
fixed point, of the plasma system can be altered. The
important assumption used throughout this paper is
that the plasma relaxation time is sufficiently small.
Figure 2 shows the fluxes versus gradients space of
the fixed points and their stability for each fluxes
value. Note that, a closed circle represents stable
fixed points and an open circle represents unstable
fixed points. They form traditional bifurcation dia-
gram, similar to those shown in [11–13]. Evidently,
QL→H = Q2,crit, ΓL→H = Γ2,crit, QH→L = Q1,crit,
and ΓH→L = Γ1,crit. Essentially, the diagram shows
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Figure 2. Bifurcation diagram illustrating two stable
branches and one unstable branch with L–H and H–L
transitions.

Figure 3. Bifurcation diagram of the pressure field
at different particle flux values.

that the gradients depend non-monotonically on their
respective fluxes. The two stable branches of the
s-curve correspond to the low (L-branch) and high (H-
branch) gradients. The third branch, containing only
unstable fixed points, cannot be physically reached
because the system is at unstable equilibrium. The on-
set of the L–H transition is where the gradient jumps
from a relatively low value to a high value if the flux is
increased slightly above the L–H threshold. The figure
also shows that an H–L back transition occurs when
the flux is reduced below the H–L threshold, with the
gradient dropping from a relatively high value to a low
value. The flux value of the H–L transition is lower
than that of the L–H transition, implying hysteresis
behaviour. Although each of the pressure and density
fields can have a bifurcation diagram with threshold
fluxes for the L–H transition and the hysteresis loop,
they interact with each other. This is illustrated in
Figure 3, which shows three bifurcation curves on
Q versus gp space at different particle flux values
(Γ1 < Γ2 < Γ3). As the particle flux is increased,

Figure 4. Plasma density (top) and pressure (bottom)
profiles as a function of the normalized minor radius
at times 200 ms apart.

the suppression strength due to the flow shear is also
increased. It is therefore physically relevant that the
requirement QL→H for the transition is less stringent.

3. Numerical results and
discussions

In this section, the two transport equations (1)
and (2) are solved simultaneously using a discretiza-
tion method for the partial differential equation. Heat
and particle sources are localized at the center and
at the edge of the plasma, respectively, and they are
assumed to be constant in time. The numerical re-
sults yield the time evolution of the plasma profiles
i.e. the pressure, the density, and their gradients. The
neoclassical transport coefficients are simply set to be
constant, while the anomalous transport coefficients
follow critical gradient transport model similar to that
described in [18]:

χano = cχ(p′ − p′
c)θ(p′ − p′

c), (11)

Dano = cD(n′ − n′
c)θ(n′ − n′

c), (12)
where cχ and cD are constants, p′

c and n′
c are the crit-

ical gradients for pressure and density fields, respec-
tively, and θ represents the Heaviside step function.

3.1. Pedestal dynamics
This section illustrates the pedestal growth in the
plasma. The crucial assumption to be noted here
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Figure 5. Pressure (top) and density (bottom)
pedestal widths as a function of time for a constant
source (horizontal line) scenario.

Figure 6. Pressure (top) and density (bottom)
pedestal widths as a function of time for a heat ramp-
ing scenario.

is that the pedestal is allowed to grow without any
constraint, e.g. MHD instability, as the aim of this
paper is to show the intrinsic property of the tokamak
plasma system. Hence, these results are presumed
to picture what would happen to the plasma and to
its pedestal if the loss mechanism, e.g. ELM, can be
controlled. Firstly, the two criteria (the minimum flux
and the minimum diffusivities ratio) for the possibility
of an L–H transition according to bifurcation model
are satisfied [19], so the plasma is ensured to reach the
H-mode in a steady state. Figure 4 demonstrates the
time evolution profiles of plasma density and pressure
at times approximately 200ms apart. It shows that
the plasma profiles make bigger increases early on.
The change slows down as the plasma reaches a steady
state. It can also be seen that the central pressure
is almost doubled from L-mode to H-mode, whereas,
the central density is increased by around 50%. One
other thing to note here is that the density profiles
tend to be flatter in the plasma core. This makes
sense, because the density flux is generated from the
plasma edge, while the thermal flux comes from the
plasma core.

It appears that when the gradient-limiting instabil-
ity is neglected, the pedestal is intrinsically able to
expand inward. This growth of the pedestal is shown
in Figure 5, which illustrates the width of the pedestal
as a function of time for both the pressure channel and
the density channel. The heat and particle sources
are assumed to be constant in time. Evidently, the
pedestal is formed first on the density channel. The
pedestal grows rapidly at first, and then it slows down
and eventually reaches its steady state. It appears
that the pedestal growth is strongly superdiffusive
(∆ped ∝ tb, b > 0.5), corresponding with a turbu-
lent nature of the plasma, because in this phase the
suppression effect is still low. Turbulent transport
therefore plays a dominant role. Later, a wider re-
gion of the plasma is suppressed, so only neoclassical
transport takes effect in the pedestal region, result-
ing in slower pedestal growth (subdiffusion or even
lower). At some later time, a pedestal is also formed
for the pressure. Two interesting points are worth
mentioning here. Firstly, although the pedestals of

the two channels do not form at the same time, they
have the same width. This is likely to be explained
by symmetry between the two transport equations.
Secondly, the time it takes the plasma to evolve during
H-mode or the pedestal expansion time is around one
order of magnitude slower than the time it takes for
the plasma to evolve from the L-mode to the H-mode.
This characteristic of the model is doubtful because,
in the real tokamak plasma, instabilities at the edge
cannot yet be controlled fully and efficiently. More-
over, in order to observe this behavior, it is necessary
to make sure that the sole mechanism for plasma loss
is via transport.
Figure 6 shows different scenarios when the heat

source is no longer constant in time. Plasma heating
(blue line) ramps up to a constant value, as in the
previous scenario, while the particle source (red line)
is kept constant at all times. Again, the pedestal is
formed first in the density channel but the pedestal
grows more slowly. It takes a longer time for the
plasma to reach a steady state, because the heat is
being ramped up. Eventually, the pedestal widths
become the same as in the previous scenario in a
steady state. This makes sense because in the end the
heat and particle fluxes given to the plasma are the
same.

3.2. Pedestal width
This section focuses on an analysis of the pedestal
width in a steady state. The relationships between
the pedestal widths and various plasma parameters
are shown in Figures 7–12. In these figures, the square
bullets represent the pedestal width, which is the same
for both pressure and density channels. The trian-
gular bullets represent the central plasma pressure
normalized to its value at the onset of the L–H tran-
sition. The cross bullets represent the central plasma
density normalized to its value at the onset of the
L–H transition.
Figure 7 shows the influence of the heat source on

the plasma. It yields that there exists an L–H transi-
tion threshold for heating. Below the threshold, there
is no formation of a transport barrier. As the heating
is increased above the threshold, the pedestal width
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Figure 7. Pedestal width and central pressure and
density in a steady state as a function of the heat
source.

Figure 8. Pedestal width and central pressure and
density in a steady state as a function of the particle
source.

Figure 9. Pedestal width and central pressure and
density in a steady state as a function of thermal
anomalous transport.

Figure 10. Pedestal width and central pressure and
density in a steady state as a function of particle
anomalous transport.

widens but at a slower rate. Apparently, the change
in the heat source has a greater effect on plasma pres-
sure than on plasma density. Numerically for this
particular case, the central pressure is increased to
3.76 times the lowest value, and the central density is
increased to 1.18 times the lowest value, as the heat
source is increased by 10 times the lowest value.
Figure 8 illustrates the influence of the particle

source on the plasma. Similarly, this yields that there
is also an L–H transition threshold for particle flux.
Below the threshold, there is no formation of a trans-
port barrier. This finding and the heat source results
are qualitatively in agreement with the stability anal-
ysis of Section 2. In contrast with the previous case,
as the particle source is increased over the threshold,
the pedestal width is in this case reduced. This can be
explained by the suppression form of (3) used in the
simulations. As the particle source is increased, the
plasma density rises, resulting in a lower suppression
value. Consequently, the plasma performance is re-
duced, while the pedestal width and also the pressure
profile are decreased. Evidently, the change in parti-
cle source has a greater effect on plasma density than
on plasma pressure. Numerically for this particular
case, the central density is increased to 3.31 times the

lowest value, and the central pressure is reduced to
0.69 times the lowest value, as the particle source is
increased to 10 times the lowest value.

The effects of thermal anomalous transport are con-
sidered as shown in Figure 9. This study is carried
out as a variation of the proportional constant cχ,
from (11), which controls the strength of the ther-
mal anomalous transport coefficient. Firstly, previous
analysis in [12, 19] concluded that the L–H transition
is possible only if the ratio of anomalous transport
over neoclassical transport exceeds a critical value.
Generally, this value is in the order of 1 to 2. Phys-
ically, this condition always holds in a real plasma,
because the anomalous transport is normally about
10 times higher in the ion channel and can even reach
100 times higher in the electron channel [20]. Fig-
ure 9 confirms the existence of this critical value for
the realization of an L–H transition. If the anoma-
lous transport is too low, there is no formation of a
transport barrier. Furthermore, as the strength of
the anomalous transport is increased, the pedestal
width narrows, and the central plasma pressure and
the central plasma density are reduced. This makes
sense: the plasma loss through transport is enhanced,
so the plasma performance should be reduced. The
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Figure 11. Pedestal width and central pressure and
density in a steady state as a function of thermal
neoclassical transport.

Figure 12. Pedestal width and central pressure and
density in a steady state as a function of particle
neoclassical transport.

reductions of the profiles appear to be stronger in
plasma pressure than in plasma density. Numerically
for this particular case, the central pressure is reduced
to 0.71 times the lowest value, and the central den-
sity is reduced to 0.93 times the lowest value, as the
proportional constant cχ is increased to 10 times the
lowest value.
The effects of particle anomalous transport are

shown in Figure 10. This study is carried out as
a variation of the proportional constant cD, from (12),
which controls the strength of the particle anomalous
transport coefficient. Similarly, this figure also con-
firms the existence of a critical value for the possibility
of an L–H transition. If the anomalous transport is
too low, there is no formation of a transport barrier.
The results are similar to those presented in Figure 9,
in which as the strength of the anomalous transport is
increased, the pedestal width narrows, and the central
plasma pressure and density are reduced. However,
the reductions of the profiles appear to be stronger in
plasma density than in plasma pressure. Numerically
for this particular case, the central pressure is reduced
to 0.96 times the lowest value, and the central den-
sity is reduced to 0.78 times the lowest value, as the
proportional constant cD is increased to 10 times the
lowest value.
The effects of thermal neoclassical transport are

shown in Figure 11, where the transport coefficient is
varied. The critical ratio for the possibility to obtain
an L–H transition is also shown here, because if the
neoclassical transport is increased too greatly, the
H-mode cannot be reached. Also, as the strength of
the thermal neoclassical transport is increased, the
pedestal width narrows and the central plasma pres-
sure and density are reduced. However, the reductions
of the profiles appear to be stronger in plasma pres-
sure. Numerically for this particular case, the central
pressure is reduced to 0.23 times the lowest value, and
the central density is reduced to 0.98 times the lowest
value, as the thermal neoclassical transport coefficient
is increased to 10 times the lowest value.

Figure 12 illustrates the effects of particle neoclassi-

cal transport on the pedestal width and on the central
plasma values. The critical ratio for the possibil-
ity to obtain an L–H transition is also evident here.
Moreover, as the strength of the particle neoclassical
transport is increased, the pedestal width is enlarged,
the central pressure is increased and the central den-
sity is reduced. These results seem to be strange when
compared with the results presented in Figure 11. The
explanation is that when the strength of the particle
neoclassical transport is increased, the plasma particle
loss is enhanced. Subsequently, the plasma density
is reduced, which increases the flow shear suppres-
sion, resulting in an increase in the pressure profiles
and also in the pedestal width. The changes in the
profiles appear to be stronger in plasma density. Nu-
merically for this particular case, the central pressure
is increased to 1.32 times the lowest value, but the
central density is reduced to 0.72 times the lowest
value, as the particle neoclassical transport coefficient
is increased to 10 times the lowest value.

4. Conclusions
A numerical method has been used to simultaneously
solve the two-field (heat and particle) transport equa-
tions. The transport effect considered here is a combi-
nation of the neoclassical transport, which is assumed
to be constant, and the anomalous transport, which
follows the critical gradient transport model. The
suppression mechanism is the flow shear calculated
from the shear of the radial electric field equation.
An analytical study based on bifurcation and stabil-
ity of fixed points shows that an abrupt increase in
the local gradients occurs at the onset of an L–H
transition. This transition is also found to depend
on the direction of heat ramping, where a backward
H–L transition can occur at lower fluxes than for a
forward L–H transition, implying hysteresis phenom-
ena. Numerically, it is found that without gradient
limiting instability, the pedestal width can initially
expand superdiffusively and later subdiffusively. The
time that the plasma takes for pedestal expansion is
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about one order of magnitude longer than it takes to
transit from L-mode to H-mode. The pedestal tends
to form first in the density channel, but in a steady
state both pedestals have the same value. Further-
more, the pedestal width in a steady state and the
central plasma pressure appear to be proportional to
the heat source and the particle neoclassical transport,
and inversely proportional to the particle source, the
thermal and particle anomalous transports and the
thermal neoclassical transport. The central plasma
density appears to be proportional to the heat and par-
ticle sources, and inversely proportional to all plasma
transports.
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